Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biphasic Janus particles with nanoscale anisotropy

Abstract

Advances in the field of nanotechnology have fuelled the vision of future devices spawned from tiny functional components that are able to assemble according to a master blueprint1. In this concept, the controlled distribution of matter or ‘patchiness’2 is important for creating anisotropic building blocks and introduces an extra design parameter — beyond size and shape3,4. Although the reliable and efficient fabrication of building blocks with controllable material distributions will be of interest for many applications in research and technology, their synthesis has been addressed only in a few specialized cases5,6. Here we show the design and synthesis of polymer-based particles with two distinct phases. The biphasic geometry of these Janus particles is induced by the simultaneous electrohydrodynamic jetting7,8,9 of parallel polymer solutions under the influence of an electrical field. The individual phases can be independently loaded with biomolecules or selectively modified with model ligands, as confirmed by confocal microscopy and transmission electron microscopy. The fact that the spatial distribution of matter can be controlled at such small length scales will provide access to unknown anisotropic materials. This type of nanocolloid may enable the design of multicomponent carriers for drug delivery, molecular imaging or guided self-assembly.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biphasic electrified jetting using side-by-side dual capillaries.
Figure 2: Biphasic anisotropy examined by TEM and modelling.
Figure 3: Encapsulation of biomolecules in a dipolar fashion.
Figure 4: Selective chemical modification.

References

  1. Glotzer, S. C. Some assembly required. Science 306, 419–420 (2004).

    Article  Google Scholar 

  2. Zhang, Z. L. & Glotzer, S. C. Self-assembly of patchy particles. Nano Lett. 4, 1407–1413 (2004).

    Article  Google Scholar 

  3. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C. & Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater. 2, 382–385 (2003).

    Article  Google Scholar 

  4. Malikova, N., Pastoriza-Santos, I., Schierhorn, M., Kotov, N. A. & Liz-Marzan, L. M. Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions. Langmuir 18, 3694–3697 (2002).

    Article  Google Scholar 

  5. Hulvat, J. F & Stupp, S. I. Anisotropic properties of conducting polymers prepared by liquid crystal templating. Adv. Mater. 16, 589–592 (2004).

    Article  Google Scholar 

  6. Teranishi, T., Inoue, Y., Oumi, Y. & Sano, T. Nanoacorns: anisotropically phase-segregated CoPd sulfide nanoparticles. J. Am. Chem. Soc. 126, 9914–9915 (2004).

    Article  Google Scholar 

  7. Taylor, G. Disintegration of water drops in electric field. Proc. R. Soc. Lond. A 280, 383–397 (1964).

    Article  Google Scholar 

  8. Zeleny, J. On the conditions of instability of electrified drops, with applications to the electrical discharge from liquid points. Proc. Camb. Phil. Soc. 18, 71–83 (1915).

    Google Scholar 

  9. Dzenis, Y. Material science: spinning continuous fibres for nanotechnology. Science 304, 1917–1918 (2004).

    Article  Google Scholar 

  10. Reneker, D. H. & Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7, 216–223 (1996).

    Article  Google Scholar 

  11. Fong, H., Chun, I. & Reneker, D. H. Beaded nanofibres formed during electrospinning. Polymer 40, 4585–4592 (1999).

    Article  Google Scholar 

  12. Jun, Z., Hou, H., Schaper, A., Wendorff, J. H. & Greiner, A. Poly-L-lactide nanofibres by electrospinning—Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers 009, 1–9 (2003).

    Google Scholar 

  13. Zeng, J. et al. Ultrafine fibres electrospun from biodegradable polymers. J. Appl. Polym. Sci. 89, 1085–1092 (2003).

    Article  Google Scholar 

  14. Sanders, E. H., Kloefkorn, R., Bowlin, G. L., Simpson, D. G. & Wnek, G. E. Two-phase electrospinning from a single electrified jet: microencapsulation of aqueous reservoirs in poly(ethylene-co-vinyl acetate) fibres. Macromolecules 36, 3803–3805 (2003).

    Article  Google Scholar 

  15. Sun, Z., Zussman, E., Yarin, A. L., Wendorff, J. H. & Greiner, A. Compound core-shell polymer nanofibres by co-electrospinning. Adv. Mater. 15, 1929–1932 (2003).

    Article  Google Scholar 

  16. Loscertales, I. G. et al. Electrically forced coaxial nanojets for one-step hollow nanofiber design. J. Am. Chem. Soc. 126, 5376–5377 (2004).

    Article  Google Scholar 

  17. Larsen, G., Velarde-Ortiz, R., Minchow, K., Barrero, A. & Loscertales, I. G. A method for making inorganic and hybrid (organic/inorganic) fibres and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets. J. Am. Chem. Soc. 125, 1154–1155 (2003).

    Article  Google Scholar 

  18. Loscertales, I. G. et al. Micro/nano encapsulation via electrified coaxial liquid jets. Science 295, 1695–1698 (2002).

    Article  Google Scholar 

  19. Berkland, C., Daniel, W., Pack, D. W. & Kim, K. Controlling surface nano-structure using flow-limited field-injection electrostatic spraying (FFESS) of poly(d,l-lactide-co-glycolide). Biomaterials 25, 5649–5658 (2004).

    Article  Google Scholar 

  20. Berkland, C., Pollauf, E., Pack, D. W. & Kim, K. Uniform double-walled polymer microspheres of controllable shell thickness. J. Control. Release 96, 101–111 (2004).

    Article  Google Scholar 

  21. Gupta, P. & Wilkes, G. L. Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach. Polymer 44, 6353–6359 (2003).

    Article  Google Scholar 

  22. Madhugiri, S., Dalton, A., Gutierrez, J., Ferraris, J. P. & Balkus, K. J. Jr. Electrospun MEH-PPV/SBA-15 composite nanofibres using a dual syringe method. J. Am. Chem. Soc. 125, 14531–14538 (2003).

    Article  Google Scholar 

  23. Barrero, A., Gañán-Calvo, A. M., Dávila, J., Palacio, A. & Gómez-González, E. Low and high Reynolds number flows inside Taylor cones. Phys. Rev. E 58, 7309–7314 (1998).

    Article  Google Scholar 

  24. http://www.susqu.edu/facstaff/b/brakke/evolver/evolver.html.

  25. Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).

    Article  Google Scholar 

  26. Xu, S. et al. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew. Chem. Int. Edn Engl. 44, 724–728 (2005).

    Article  Google Scholar 

  27. Hermanson, G. T. Bioconjugate Techniques (Academic, San Diego, 1995).

    Google Scholar 

  28. Millman, J. R., Bhatt, K. H., Prevo, B. G. & Velev, O. D. Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors. Nature Mater. 4, 98–102 (2005).

    Article  Google Scholar 

  29. Lu, Y. et al. Asymmetric dimers can be formed by dewetting half-shells of gold deposited on the surfaces of spherical oxide colloids. J. Am. Chem. Soc. 125, 12724–12725 (2003).

    Article  Google Scholar 

  30. Paunov, V. N. & Cayre, O. J. Supraparticles and ‘Janus’ particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique. Adv. Mater. 16, 788–791 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Solomon, University of Michigan, for use of the confocal laser scanning microscope and Manke, Wayne State University, for use of the viscometer. D.C.M. acknowledges partial support from the National Science Foundation through grant DMR-0084304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Lahann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary table 1 (PDF 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roh, KH., Martin, D. & Lahann, J. Biphasic Janus particles with nanoscale anisotropy. Nature Mater 4, 759–763 (2005). https://doi.org/10.1038/nmat1486

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1486

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing