Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

From anisotropic photo-fluidity towards nanomanipulation in the optical near-field

Abstract

An increase in random molecular vibrations of a solid owing to heating above the melting point leads to a decrease in its long-range order and a loss of structural symmetry. Therefore conventional liquids are isotropic media. Here we report on a light-induced isothermal transition of a polymer film from an isotropic solid to an anisotropic liquid state in which the degree of mechanical anisotropy can be controlled by light. Whereas during irradiation by circular polarized light the film behaves as an isotropic viscoelastic fluid, it shows considerable fluidity only in the direction parallel to the light field vector under linear polarized light. The fluidization phenomenon is related to photoinduced motion of azobenzene-functionalized molecular units, which can be effectively activated only when their transition dipole moments are oriented close to the direction of the light polarization. We also describe here how the photofluidization allows nanoscopic elements of matter to be precisely manipulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Penetration curves of a silicon nitride tip in a spin-coated film of pDR1M under continuously increasing/decreasing load (|dF/dt|=1,200 nN s−1).
Figure 2: Response of the surface of a pDR1M film to a constant load for several minutes.
Figure 3: One-direction fluidity of a pDR1M film.
Figure 4: Photofluidization with a resolution of about 20 nm.
Figure 5: Trapping and transfer.

Similar content being viewed by others

References

  1. Ashkin, A. Optical trapping and manipulation of neutral particles using lasers. Proc. Natl Acad. Sci. USA 94, 4853–4860 (1997).

    Article  Google Scholar 

  2. Chu, S. The manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998).

    Article  Google Scholar 

  3. Kuhr, S. et al. Deterministic delivery of a single atom. Science 293, 278–280 (2001).

    Article  Google Scholar 

  4. Manuz, P. et al. Cavity cooling of a single atom. Nature 428, 50–52 (2004).

    Article  Google Scholar 

  5. Feurer, T., Vaughan, J. C. & Nelson, K. A. Spatiotemporal coherent control of lattice vibrational waves. Science 299, 374–377 (2003).

    Article  Google Scholar 

  6. Auld, B. A. Acoustic Fields and Waves in Solid (Krieger, Malabar, Florida, 1990).

    Google Scholar 

  7. Fillard, J. P. Near Field Optics and Nanoscopy (World Scientific, Singapore, 1996).

    Book  Google Scholar 

  8. Balykin, V. I., Klimov, V. V. & Letokhov, V. S. Laser near field lens for atoms. J. Phys. II 4, 1981–1997 (1994).

    Google Scholar 

  9. Pohl, D. W. in Forces in Scanning Probe Methods (eds Güntherodt, H. -J., Anselmetti, D. & Meyer, E.) 235–248 (NATO Advanced Study Institutes, Ser. E, Vol. 286, Kluwer, Dordrecht, 1995).

    Book  Google Scholar 

  10. Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).

    Article  Google Scholar 

  11. Kottmann, J. P., Martin, O. J. F., Smith, D. R. & Schultz, S. Non-regularly shaped plasmon resonant nanoparticle as localized light source for near-field microscopy. J. Microsc. 202, 60–65 (2001).

    Article  Google Scholar 

  12. Rau, H. in Photochemistry and Photophysics Vol. 2 (ed. Rabek, J. F.) 119–141 (CRC, Boca Raton, Florida, 1990).

    Google Scholar 

  13. Hampson, G. C. & Robertson, J. M. Bond lengths and resonance in the cis-azobenzene molecule. J. Chem. Soc. 409–413 (1941).

  14. Brown, C. J. A refinement of the crystal structure of azobenzene. Acta Crystallogr. 21, 146–152 (1966).

    Article  Google Scholar 

  15. Natansohn, A. & Rochon, P. Photoinduced motions in azo-containing polymers. Chem. Rev. 102, 4139–4175 (2002).

    Article  Google Scholar 

  16. Vismanathan, N. K. et al. Surface relief structures on azo polymer films. J. Mater. Chem. 9, 1941–1955 (1999).

    Article  Google Scholar 

  17. Barrett, C. J., Rochon, P. L. & Natansohn, A. L. Model of laser-driven mass transport in thin films of dye-functionalized polymers. J. Chem. Phys. 109, 1505–1516 (1998).

    Article  Google Scholar 

  18. Kumar, J. et al. Gradient force: The mechanism for surface relief grating formation in azobenzene functionalized polymers. Appl. Phys. Lett. 72, 2096–2098 (1998).

    Article  Google Scholar 

  19. Sumarua, K., Yamanaka, T., Fukuda, T. & Matsuda, H. Photoinduced surface relief gratings on azopolymer films: Analysis by a fluid mechanics model. Appl. Phys. Lett. 75, 1878–1880 (1999).

    Article  Google Scholar 

  20. Geue, T. M. et al. Formation mechanism and dynamics in polymer surface gratings. Phys. Rev. E 65, 052801 (2002).

    Article  Google Scholar 

  21. Natansohn, A., Rochon, P., Gosselin, J. & Xie, S. Azo polymers for reversible optical storage. 1. Poly[4′ -[[2-(acryloyloxy)ethyl]ethylaminol-4-nitroazobenzene]. Macromolecules 25, 2268–2273 (1992).

    Article  Google Scholar 

  22. Mechau, N., Neher, D., Börger, V., Menzel, H. & Urayama, K. Optically driven diffusion and mechanical softening in azobenzene polymer layers. Appl. Phys. Lett. 81, 4715–4717 (2002).

    Article  Google Scholar 

  23. Kobayashi, T., Degenkolb, E. O. & Rentzepis, P. M. Picosecond Spectroscopy of 1-Phenylazo-2-hydroxynaphthalene. J. Phys. Chem. 83, 2431–2434 (1979).

    Article  Google Scholar 

  24. Stiller, B. et al. Scanning Kelvin microscopy as a tool for visualization of optically induced molecular switching in azobenzene self assembling films. Surf. Interface Anal. 30, 549–551 (2000).

    Article  Google Scholar 

  25. Karageorgiev, P. et al. Modification of the surface potential of azobenzene-containing Langmuir-Blodgett films in the near field of a scanning Kelvin microscope tip by irradiation. Langmuir 16, 5515–5518 (2000).

    Article  Google Scholar 

  26. Yager, K. G. & Barrett, C. J. Temperature modelling of laser-irradiated azo-polymer thin films. J. Chem. Phys. 120, 1089–1096 (2004).

    Article  Google Scholar 

  27. VanLandingham, M. R., Villarrubia, J. S., Guthrie, W. F. & Meyers, G. F. in Advances in Scanning Probe Microscopy of Polymers (eds Tsukruk, V. V. & Spencer, N. D.) 15–43 (Macromol. Symp. 2001, Vol. 167, Wiley-VCH, Weinheim, 2001).

    Google Scholar 

  28. Sperling, L. H. Introduction to Physical Polymer Science 2nd edn (Wiley, New York, 1992).

    Google Scholar 

  29. Sane, S. B. & Knauss, W. G. On interconversion of various material functions of PMMA. Mech. Time-Depend. Mater. 5, 325–343 (2001).

    Article  Google Scholar 

  30. Ting, T. C. T. The contact stress between a rigid indenter and viscoelastic half-space. J. Appl. Mech. 33, 845–854 (1966).

    Article  Google Scholar 

  31. Barrett, C. J., Natansohn, A. L. & Rochon, P. L. Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films. J. Phys. Chem. 100, 8836–8842 (1996).

    Article  Google Scholar 

  32. Todorov, T., Nikolova, L. & Tomova, N. Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence. Appl. Opt. 23, 4309–4312 (1984).

    Article  Google Scholar 

  33. Sekkat, Z. et al. Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain. J. Opt. Soc. Am. B 13, 1713–1724 (1996).

    Article  Google Scholar 

  34. Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P. & Shelley, M. Fast liquid-crystal elastomer swims into the dark. Nature Mater. 3, 307–310 (2004).

    Article  Google Scholar 

  35. Ikawa, T. et al. Optical near field induced change in viscoelasticity on an azobenzene-containing polymer surface. J. Phys. Chem. B 104, 9055–9058 (2000).

    Article  Google Scholar 

  36. Bozhevolnyi, S. I. & Vohnsen, B. Near-field optics with uncoated fiber tips: light confinement and spatial resolution. J. Opt. Soc. Am. B 14, 1656–1663 (1997).

    Article  Google Scholar 

  37. Fukuda, T. et al. Observation of optical near-field as photo-induced surface relief formation. Jpn J. Appl. Phys. 40, L900–L902 (2001).

    Article  Google Scholar 

  38. Royer, P., Barchiesi, D., Lerondel, G. & Bachelot, R. Near-field optical pattering and structuring based on local-field enhancement at the extremity of a metal tip. Phil. Trans. R. Soc. Lond. A 362, 821–842 (2004).

    Article  Google Scholar 

  39. Karageorgiev, P., Stiller, B. & Brehmer, L. Verfahren zum optischen Induzieren eines Massetransports. DE Patent 10234012A1 (2002).

  40. Watanabe, O. et al. Transcription of near-field induced by photo-irradiation on a film of azo-containing urethane-urea copolymer. Mol. Cryst. Liq. Cryst. 345, 305–310 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Stumpe for discussions, K. Morawetz and O. Henneberg for the preparation of samples, A. Kosiorek and W. Kandulski for the SEM images of the probe tips. P.K. thanks V. Karageorgieva for encouragement during the experimental work and assistance with preparing the manuscript, and S. Schrader for support. The Ministerium für Wissenschaft, Forschung und Kultur of Brandenburg funded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Karageorgiev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 - S5 (PDF 275 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karageorgiev, P., Neher, D., Schulz, B. et al. From anisotropic photo-fluidity towards nanomanipulation in the optical near-field. Nature Mater 4, 699–703 (2005). https://doi.org/10.1038/nmat1459

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1459

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing