Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-ray-diffraction characterization of Pt(111) surface nanopatterning induced by C60 adsorption

Abstract

Understanding the adsorption mechanisms of large molecules on metal surfaces is a demanding task. Theoretical predictions are difficult because of the large number of atoms that have to be considered in the calculations, and experiments aiming to solve the molecule–substrate interaction geometry are almost impossible with standard laboratory techniques. Here, we show that the adsorption of complex organic molecules can induce perfectly ordered nanostructuring of metal surfaces. We use surface X-ray diffraction to investigate in detail the bonding geometry of C60 with the Pt(111) surface, and to elucidate the interaction mechanism leading to the restructuring of the Pt(111) surface. The chemical interaction between one monolayer of C60 molecules and the clean Pt(111) surface results in the formation of an ordered reconstruction based on the creation of a surface vacancy lattice. The C60 molecules are located on top of the vacancies, and 12 covalent bonds are formed between the carbon atoms and the 6 platinum surface atoms around the vacancies. In-plane displacements induced on the platinum substrate are of the order of a few picometres in the top layer, and are undetectable in the deeper layers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure factors, Fh k l, of CTRs as a function of the vertical exchanged momentum l, in reciprocal lattice units, measured for the clean Pt(111) surface and for the one monolayer C60/Pt(111) interface.
Figure 2: Contour map of the electron difference function between the experimental data and the bare vacancy model.
Figure 3: Structural model of the top layer of the Pt(111) surface.
Figure 4: Dependence of the reduced chi-square, χN2, on the fullerene azimuth orientation with respect to the Pt substrate.
Figure 5: Adsorption structure of the C60 molecules at the Pt(111) surface.

Similar content being viewed by others

References

  1. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    Article  Google Scholar 

  2. Weckesser, J., Barth, J. V. & Kern, K. Direct observation of surface diffusion of large organic molecules at metal surfaces: PVBA on Pd(110). J. Chem. Phys. 110, 5351–5354 (1999).

    Article  Google Scholar 

  3. Schunack, M. et al. Anchoring of organic molecules to a metal surface: HtBDC on Cu(110). Phys. Rev. Lett. 86, 456–459 (2001).

    Article  Google Scholar 

  4. Rosei, F. et al. Organic molecules acting as templates on metal surfaces. Science 296, 328–331 (2002).

    Article  Google Scholar 

  5. Rosei, F. et al. Properties of large organic molecules on metal surfaces. Prog. Surf. Sci. 71, 95–146 (2003).

    Article  Google Scholar 

  6. Maxwell, A. J. et al. Scales in core level excitations: C 1s X-ray absorption of C60/Al. Phys. Rev. Lett. 79, 1567–1570 (1997).

    Article  Google Scholar 

  7. Maxwell, A. J. et al. Electronic and geometric structure of C60 on Al(111) and Al(110). Phys. Rev. B 57, 7312–7326 (1998).

    Article  Google Scholar 

  8. Pedio, M. et al. Study of C60/Au(110)-p(6 x 5) reconstruction from in-plane x-ray diffraction data. Phys. Rev. Lett. 85, 1040–1043 (2000).

    Article  Google Scholar 

  9. Torrelles, X. et al. In-plane x-ray diffraction study of the C-60/Au(110) p(6x5) reconstructed surface by direct methods. Phys. Status Solidi b 215, 773–777 (1999).

    Article  Google Scholar 

  10. Futaba, D. N. & Chiang, S. Calculation of scanning tunneling microscopy images of benzene on Pt(111) and Pd(111). Jpn J. Appl. Phys. 38, 3809–3812 (1999).

    Article  Google Scholar 

  11. Hallmark, V. M., Chiang, S., Meinhardt, K. -P. & Hafner, K. Observation and calculation of internal structure in scanning-tunneling-microscopy images of related molecules. Phys. Rev. Lett. 70, 3740–3743 (1993).

    Article  Google Scholar 

  12. Hallmark, V. M. & Chiang, S. Predicting STM images of molecular adsorbates. Surf. Sci. 329, 255–268 (1995).

    Article  Google Scholar 

  13. Robinson, I. K. & Tweet, D. J. Surface X-ray diffraction. Rep. Prog. Phys. 55, 599–651 (1992).

    Article  Google Scholar 

  14. Stengel, M., De Vita, A. & Baldereschi, A. Adatom-vacancy mechanisms for the C60/Al(111)-(6x6) reconstruction. Phys. Rev. Lett. 91, 166101 (2003).

    Article  Google Scholar 

  15. Rudolf, P., Gensterblum, G. & Caudano, R. Growth and characterization of fullerene interfaces on metallic and semiconductor substrates. J. Phys. IV 7, 137–149 (1997).

    Google Scholar 

  16. Weckesser, J. et al. Binding and ordering of C60 on Pd(110): Investigations at the local and mesoscopic scale. J. Chem. Phys. 115, 9001–9009 (2001).

    Article  Google Scholar 

  17. Needs, R. J., Godfrey, M. J. & Mansfield, M. Theory of surface stress and surface reconstruction. Surf. Sci. 242, 215–221 (1991).

    Article  Google Scholar 

  18. Grübel, G. et al. Reconstruction of the Pt(111) surface – x-ray scattering measurements. Phys. Rev. B 48, 18119–18139 (1993).

    Article  Google Scholar 

  19. Sandy, A. R., Mochrie, S. G. J., Zehner, D. M., Huang, K. G. & Gibbs, D. Structure and phases of the Au(111) surface: X-ray scattering measurements. Phys. Rev. B 43, 4667–4687 (1991).

    Article  Google Scholar 

  20. Feibelman, P. J. First-principles calculations of stress induced by gas adsorption on Pt(111). Phys. Rev. B 56, 2175–2182 (1997).

    Article  Google Scholar 

  21. Xu, H., Yuro, R. & Harrison, I. The structure and corrosion chemistry of bromine on Pt(111). Surf. Sci. 411, 303–315 (1998).

    Article  Google Scholar 

  22. Mattsson, T. R. & Mattsson, A. E. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo. Phys. Rev. B 66, 214110 (2002).

    Article  Google Scholar 

  23. Pedio, M. et al. C60/metal surfaces: adsorption and decomposition. Surf. Sci. 437, 249–260 (1999).

    Article  Google Scholar 

  24. Cepek, C., Goldoni, A. & Modesti, S. Chemisorption and fragmentation of C60 on Pt(111) and Ni(110). Phys. Rev. B 53, 7466–7472 (1996).

    Article  Google Scholar 

  25. Vlieg, E. ROD: A program for surface X-ray crystallography. J. Appl. Crystallogr. 33, 401–405 (2000).

    Article  Google Scholar 

  26. Robinson, I. K. Crystal truncation rods and surface roughness. Phys. Rev. B 33, 3830–3836 (1986).

    Article  Google Scholar 

  27. Materer, N. et al. Reliability of detailed LEED structural analysis – Pt(111) and Pt(111)-p(2x2)-O. Surf. Sci. 325, 207–222 (1995).

    Article  Google Scholar 

  28. Patterson, A. L. A Fourier series method for the determination of the components of interatomic distances in crystals. Phys. Rev. 46, 372–376 (1934).

    Article  Google Scholar 

  29. Dyer, H. B. The crystal structure of cysteylglycine-sodium iodide. Acta Crystallogr. 4, 42–50 (1951).

    Article  Google Scholar 

  30. Williams, G. J., Pfeifer, M. A., Vartanyants, I. A. & Robinson, I. K. Three-dimensional imaging of microstructure in Au nanocrystals. Phys. Rev. Lett. 90, 175501–175505 (2003).

    Article  Google Scholar 

  31. Watson, G. W., Wells, R. P. K., Willock, D. J. & Hutchings, G. J. Density functional theory calculations on the interaction of ethane with the {111} surface of platinum. J. Phys. Chem. B 104, 6439–6446 (2000).

    Article  Google Scholar 

  32. Gomes, J. R. B. & Gomes, J. A. N. F. Adsorption of the formyl species on transition metal surfaces. J. Electroanal. Chem. 483, 180–187 (2000).

    Article  Google Scholar 

  33. Forro’, L. & Mihaly, L. Electronic properties of doped fullerenes. Rep. Prog. Phys. 64, 649–699 (2001).

    Article  Google Scholar 

  34. Giovanelli, L. et al. Molecular orientation of C60 on Pt(111) determined by X-ray photo-electron diffraction. Appl. Surf. Sci. 212, 57–61 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the ESRF staff for their technical help. This work was partially financed by MADESS II—CNR and FIRB—Carbon Nanotube and Carbide Surface projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Felici.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felici, R., Pedio, M., Borgatti, F. et al. X-ray-diffraction characterization of Pt(111) surface nanopatterning induced by C60 adsorption. Nature Mater 4, 688–692 (2005). https://doi.org/10.1038/nmat1456

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1456

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing