Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

50 MHz rectifier based on an organic diode

Abstract

Amain focus of research on organic semiconductors is their potential application in passive organic radio-frequency identification (RF-ID) tags. First prototypes working at 125 kHz have been shown by industrial research groups1. However, to be commercially viable, the organic RF-ID tag would need to be compatible with the base-carrier frequency of 13.56 MHz (ref. 2). High-frequency operation has been out of reach for devices based on organic semiconducting material, because of the intrinsically low mobility of those materials. Here, we report on a rectifier based on a pentacene diode that can rectify an incoming a.c. signal at 50 MHz. At 14 MHz, a rectified voltage of 11 V for an a.c. voltage with a peak-to-peak amplitude of 36 V has been achieved. On the basis of those results, we estimate the frequency limits of an organic diode showing that even the ultra-high-frequency band at around 800 MHz is within reach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pentacene diode.
Figure 2
Figure 3: Rectifying signal of a pentacene diode.
Figure 4: Frequency dependence of the rectified d.c. voltage for a rectifier with an organic diode.

Similar content being viewed by others

References

  1. Baude, P. F. et al. Pentacene-based radio-frequency identification circuitry. Appl. Phys. Lett. 82, 3964–3966 (2003).

    Article  CAS  Google Scholar 

  2. Finkenzeller, K. RFID Handbook Vol. 1 Ch. 5, 114 (Wiley, New York, 2002).

    Google Scholar 

  3. De Leeuw, D. Identification transponder. US Patent WO99/30432 (1999).

  4. Ma, L., Ouyang, J. & Yang, Y. High-speed and high-current density C60 diodes. Appl. Phys. Lett. 84, 4786–4788 (2004).

    Article  CAS  Google Scholar 

  5. Karg, S., Meier, M. & Riess, W. Light-emitting diodes based on poly-p-phenylene-vinylene: I. Charge-carrier injection and transport. J. Appl. Phys. 82, 1951–1960 (1997).

    Article  CAS  Google Scholar 

  6. Roman, L. S., Berggren, M. & Inganäs, O. Polymer diodes with high rectification. Appl. Phys. Lett. 75, 3557–3559 (1999).

    Article  CAS  Google Scholar 

  7. Hu, W., Gompf, B., Pflaum, J., Schweitzer, D. & Dressel, M. Transport properties of [2,2]-paracyclophane thin films. Appl. Phys. Lett. 84, 4720–4722 (2004).

    Article  CAS  Google Scholar 

  8. Gao, W. & Kahn, A. Electronic structure and current injection in zinc phthalocyanine doped with tetrafluorotetracyanoquinodimethane: Interface versus bulk effects. Org. Electron. 3, 53–63 (2002).

    Article  CAS  Google Scholar 

  9. Tanase, C., Meijer, E. J., Blom, P. W. M. & De Leeuw, D. M. Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 91, 216601 (2003).

    Article  CAS  Google Scholar 

  10. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers 2nd edn Vol. 1 Ch. VI, 663 (Oxford Univ. Press, New York, Oxford, 1999).

    Google Scholar 

  11. Koch, N., Elschner, A., Schwartz, J. & Kahn, A. Organic molecular films on gold versus conducting polymer: Influence of injection barrier height and morphology on current-voltage characteristics. Appl. Phys. Lett. 82, 2281–2283 (2003).

    Article  CAS  Google Scholar 

  12. Yamamoto, H., Kasajima, H., Yokoyama, W., Sasabe, H. & Adachi, C. Extremely-high-density carrier injection and transport over 12000 A/cm2 into organic thin films. Appl. Phys. Lett. 86, 083502 (2005).

    Article  Google Scholar 

  13. Crone, B. K. et al. Organic oscillator and adaptive amplifier circuits for chemical vapor sensing. J. Appl. Phys. 91, 10140 (2002).

    Article  CAS  Google Scholar 

  14. Klauk, H. et al. Pentacene organic transistors and ring oscillators on glass and on flexible polymeric substrates. Appl. Phys. Lett. 82, 4175–4177 (2003).

    Article  CAS  Google Scholar 

  15. Kelley, T. W., Muyres, D. V., Baude, P. F., Smith, T. P. & Jones, T. D. High performance organic-thin-film transistors. Mater. Res. Soc. Symp. Proc. 771, L6.5.1.–L6.5.10 (2003).

    Article  Google Scholar 

  16. De Vusser, S., Steudel, S., Myny, K., Genoe, J. & Heremans, P. High performance, low voltage organic thin-film transistors and circuits. Mater. Res. Soc. Symp. Proc. E 870, H1.4.1–H1.4.6 (2005).

    Google Scholar 

  17. Lampert, M. A. & Mark, P. Current Injection in Solids (Academic, New York, 1970).

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the European-funded Integrated Project POLYAPPLY (IST No. 507143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soeren Steudel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steudel, S., Myny, K., Arkhipov, V. et al. 50 MHz rectifier based on an organic diode. Nature Mater 4, 597–600 (2005). https://doi.org/10.1038/nmat1434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1434

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing