Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments

Abstract

Nanoindentation has become ubiquitous for the measurement of mechanical properties at ever-decreasing scales of interest, including some studies that have explored the atomic-level origins of plasticity in perfect crystals. With substantial guidance from atomistic simulations, the onset of plasticity during nanoindentation is now widely believed to be associated with homogeneous dislocation nucleation. However, to date there has been no compelling quantitative experimental support for the atomic-scale mechanisms predicted by atomistic simulations. Our purpose here is to significantly advance the quantitative potential of nanoindentation experiments for the study of dislocation nucleation. This is accomplished through the development and application of high-temperature nanoindentation testing, and the introduction of statistical methods to quantitatively evaluate data. The combined use of these techniques suggests an unexpected picture of incipient plasticity that involves heterogeneous nucleation sites, and which has not been anticipated by atomistic simulations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Nanoindentation at elevated temperatures.
Figure 2: Statistics of the first displacement burst.

References

  1. Gerberich, W. W., Venkataraman, S. K., Huang, H., Harvey, S. E. & Kohlstedt, D. L. The injection of plasticity by millinewton contacts. Acta Metall. Mater. 43, 1569–1576 (1995).

    CAS  Article  Google Scholar 

  2. Gerberich, W. W., Nelson, J. C., Lilleodden, E. T., Anderson, P. & Wyrobek, J. T. Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585–3598 (1996).

    CAS  Article  Google Scholar 

  3. Li, J., Van-Vliet, K. J., Zhu, T., Yip, S. & Suresh, S. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307–310 (2002).

    CAS  Article  Google Scholar 

  4. Fago, M., Hayes, R. L., Carter, E. A. & Ortiz, M. Density-functional-theory-based local quasicontinuum method: Prediction of dislocation nucleation. Phys. Rev. B 70, 100102 (2004).

    Article  Google Scholar 

  5. Suresh, S., Nieh, T. G. & Choi, B. W. Nano-indentation of copper thin films on silicon substrates. Scripta Mater. 41, 951–957 (1999).

    CAS  Article  Google Scholar 

  6. Knap, J. & Ortiz, M. Effect of indenter-radius size on Au(001) nanoindentation. Phys. Rev. Lett. 90, 226102 (2003).

    CAS  Article  Google Scholar 

  7. Kelchner, C. L., Plimpton, S. J. & Hamilton, J. C. Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085 (1998).

    CAS  Article  Google Scholar 

  8. de la Fuente, O. R. et al. Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations. Phys. Rev. Lett. 88, 036101 (2002).

    Article  Google Scholar 

  9. Lilleodden, E. T., Zimmerman, J. A., Foiles, S. M. & Nix, W. D. Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51, 901–920 (2003).

    CAS  Article  Google Scholar 

  10. Miller, R. E. & Acharya, A. A stress-gradient based criterion for dislocation nucleation in crystals. J. Mech. Phys. Solids 52, 1507–1525 (2004).

    Article  Google Scholar 

  11. Zhu, T. et al. Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. J. Mech. Phys. Solids 52, 691–724 (2004).

    CAS  Article  Google Scholar 

  12. Corcoran, S. G., Colton, R. J., Lilleodden, E. T. & Gerberich, W. W. Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B 55, R16057–R16060 (1997).

    CAS  Article  Google Scholar 

  13. Kiely, J. D. & Houston, J. E. Nanomechanical properties of Au (111), (001), and (110) surfaces. Phys. Rev. B 57, 12588–12594 (1998).

    CAS  Article  Google Scholar 

  14. Michalske, T. A. & Houston, J. E. Dislocation nucleation at nano-scale contacts. Acta Mater. 46, 391–396 (1998).

    CAS  Article  Google Scholar 

  15. Gouldstone, A., Koh, H. -J., Zeng, K. -Y., Giannakopoulos, A. E. & Suresh, S. Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277–2295 (2000).

    CAS  Article  Google Scholar 

  16. Chiu, Y. L. & Ngan, A. H. W. Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599–1611 (2002).

    CAS  Article  Google Scholar 

  17. Wo, P. C. & Ngan, A. H. W. Incipient plasticity during nano-scratch in Ni3Al. Phil. Mag. 84, 3145–3157 (2004).

    CAS  Article  Google Scholar 

  18. Wo, P. C., Zuo, L. & Ngan, A. H. W. Time-dependent incipient plasticity in Ni3Al as observed in nanoindentation. J. Mater. Res. 20, 489–495 (2005).

    CAS  Article  Google Scholar 

  19. Page, T. F., Oliver, W. C. & McHargue, C. J. The deformation behavior of ceramic crystals subjected to very low load (nano)indentations. J. Mater. Res. 7, 450–473 (1992).

    CAS  Article  Google Scholar 

  20. Gane, N. & Bowden, F. P. Microdeformation of solids. J. Appl. Phys. 39, 1432–1435 (1968).

    CAS  Article  Google Scholar 

  21. Chiu, Y. L. & Ngan, A. H. W. A TEM investigation on indentation plastic zones in Ni3Al (Cr, b) single crystals. Acta Mater. 50, 2677–2691 (2002).

    CAS  Article  Google Scholar 

  22. Minor, A. M., Morris, J. W. & Stach, E. A. Quantitative in situ nanoindentation in an electron microscope. Appl. Phys. Lett. 79, 1625–1627 (2001).

    CAS  Article  Google Scholar 

  23. Minor, A. M., Lilleodden, E. T., Stach, E. A. & Morris, J. W. Direct observations of incipient plasticity during nanoindentation of Al. J. Mater. Res. 19, 176–182 (2004).

    CAS  Article  Google Scholar 

  24. Wang, W., Jiang, C. B. & Lu, K. Deformation behavior of Ni3Al single crystals during nanoindentation. Acta Mater. 51, 6169–6180 (2003).

    CAS  Article  Google Scholar 

  25. Mann, A. B. & Pethica, J. B. The effect of tip momentum on the contact stiffness and yielding during nanoindentation testing. Phil. Mag. A 79, 577–592 (1999).

    CAS  Article  Google Scholar 

  26. Shibutani, Y. & Koyama, A. Surface roughness effects on the displacement bursts observed in nanoindentation. J. Mater. Res. 19, 183–188 (2004).

    CAS  Article  Google Scholar 

  27. Schuh, C. A. & Lund, A. C. Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J. Mater. Res. 19, 2152–2158 (2004).

    CAS  Article  Google Scholar 

  28. Chinh, N. Q., Horváth, G., Kovács, Z. & Lendvai, J. Characterization of plastic instability steps occurring in depth-sensing indentation tests. Mater. Sci. Eng. A 324, 219–224 (2002).

    Article  Google Scholar 

  29. Syed-Asif, S. A. & Pethica, J. B. Nanoindentation creep of single-crystal tungsten and gallium arsenide. Phil. Mag. A 76, 1105–1118 (1997).

    Article  Google Scholar 

  30. Kramer, D. E., Yoder, K. B. & Gerberich, W. W. Surface constrained plasticity: Oxide rupture and the yield point process. Phil. Mag. A 81, 2033–2058 (2001).

    CAS  Article  Google Scholar 

  31. Volinsky, A. A., Moody, N. R. & Gerberich, W. W. Nanoindentation of Au and Pt/Cu thin films at elevated temperatures. J. Mater. Res. 19, 2650–2657 (2004).

    CAS  Article  Google Scholar 

  32. Lucas, B. N. & Oliver, W. C. Time dependent indentation testing at non-ambient temperatures utilizing the high temperature mechanical properties microprobe. Mater. Res. Soc. Symp. Proc. 356, 645–650 (1995).

    CAS  Article  Google Scholar 

  33. Lucas, B. N. & Oliver, W. C. Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601–610 (1999).

    Article  Google Scholar 

  34. Bahr, D. F., Wilson, D. E. & Crowson, D. A. Energy considerations regarding yield points during indentation. J. Mater. Res. 14, 2269–2275 (1999).

    CAS  Article  Google Scholar 

  35. Beake, B. D. & Smith, J. F. High-temperature nanoindentation testing of fused silica and other materials. Phil. Mag. A 82, 2179–2186 (2002).

    CAS  Article  Google Scholar 

  36. Xia, J., Li, C. X. & Dong, H. Hot-stage nano-characterizations of an iron aluminide. Mater. Sci. Eng. A 354, 112–120 (2003).

    Article  Google Scholar 

  37. Smith, J. F. & Zheng, S. High temperature nanoscale mechanical property measurements. Surf. Eng. 16, 143–146 (2000).

    CAS  Article  Google Scholar 

  38. Lund, A. C., Hodge, A. M. & Schuh, C. A. Incipient plasticity during nanoindentation at elevated temperatures. Appl. Phys. Lett. 85, 1362–1364 (2004).

    CAS  Article  Google Scholar 

  39. Fischer-Cripps, A. C. Introduction to Contact Mechanics (Springer, New York, 2000).

    Google Scholar 

  40. Hirth, J. P. & Lothe, J. Theory of Dislocations (Wiley, New York, 1982).

    Google Scholar 

  41. Wollenberger, H. in Physical Metallurgy (eds Cahn, R. W. & Haasen, P.) Ch. 18, 1621–1722 (North Holland, Amsterdam, 1996).

    Book  Google Scholar 

  42. Seitz, F. On the formation of dislocations from vacancies. Phys. Rev. 79, 890–891 (1950).

    Article  Google Scholar 

  43. Zimmerman, J. A., Kelchner, C. L., Klein, P. A., Hamilton, J. C. & Foiles, S. M. Surface step effects on nanoindentation. Phys. Rev. Lett. 87, 165507 (2001).

    CAS  Article  Google Scholar 

  44. Conrad, H. in High Strength Materials (ed. Zackay, V. F.) Ch. 11, 436–509 (Wiley, New York, 1965).

    Google Scholar 

  45. Pokluda, J., Cerny, M., Sandera, P. & Sob, M. Calculations of theoretical strength: State of the art and history. J. Comput.-Aided Mater. Design 11, 1–28 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Office of Naval Research; the views expressed herein are not endorsed by the sponsor. The collaborative support of Hysitron and the collaborative involvement of A. Hodge (Lawrence Livermore National Laboratory) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Schuh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schuh, C., Mason, J. & Lund, A. Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nature Mater 4, 617–621 (2005). https://doi.org/10.1038/nmat1429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1429

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing