Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics

Abstract

Electronic devices based on single crystals of organic semiconductors provide powerful means for studying intrinsic charge-transport phenomena and their fundamental electronic limits1,2,3,4. However, for technological exploitation, it is imperative not to be confined to the tedious growth and cumbersome manipulation of molecular crystals—which generally show notoriously poor mechanical properties—but to be able to process such materials into robust architectures by simple and efficient means. Here, we advance a general route for facile fabrication of thin-film devices from solution. The key beneficial feature of our process—and the principal difference from existing vapour deposition5,6,7 and solution-processing schemes7,8,9,10—is the incorporation of a glass-inducing diluent that enables controlled crystallization from an initial vitreous state of the organic semiconductor, formed in a selected area of the phase diagram of the two constituents. We find that the vitrifying diluent does not adversely affect device performance. Indeed, our environmentally stable, discrete rubrene-based transistors rival amorphous silicon devices, reaching saturated mobilities of up to 0.7 cm2 V−1 s−1, ON–OFF ratios of ≥106 and subthreshold slopes as steep as 0.5 V per decade. A nearly temperature-independent device mobility, indicative of a high crystalline quality of our solution-processed, rubrene-based films11, corroborates these findings. Inverter and ring-oscillator structures are also demonstrated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Procedure for fabricating, from solution, crystalline organic thin films by exploiting the phase behaviour of the active, semiconductive species ii (here, rubrene, 2) and a ‘glass-inducing’ diluent iv (here, 5,12-diphenylanthracene, 1).
Figure 2: DSC, and wide-angle X-ray scattering (WAXS), for hypereutectic 1,2-mixtures of a glass-forming composition with maximum rubrene content (50–55 wt%).
Figure 3: Optical microscopy of hypereutectic rubrene-based architectures.
Figure 4: Device performance of discrete and integrated FETs.

Similar content being viewed by others

References

  1. Podzorov, V., Pudalov, V. M. & Gershenson, M. E. Field-effect transistors on rubrene single crystals with parylene gate insulator. Appl. Phys. Lett. 82, 1739–1741 (2003).

    Article  CAS  Google Scholar 

  2. Podzorov, V., Sysoev, S. E., Loginova, E., Pudalov, V. M. & Gershenson, M. E. Single-crystal organic field effect transistors with the hole mobility 8 cm2/V s. Appl. Phys. Lett. 83, 3504–3505 (2003).

    Article  CAS  Google Scholar 

  3. Sundar, V. C. et al. Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals. Science 303, 1644–1646 (2004).

    Article  CAS  Google Scholar 

  4. de Boer, R. W. I., Klapwijk, T. M. & Morpurgo, A. F. Field-effect transistors on tetracene single crystals. Appl. Phys. Lett. 83, 4345–4347 (2003).

    Article  CAS  Google Scholar 

  5. Klauk, H., Gundlach, D. J., Nichols, J. A. & Jackson, T. N. Pentacene organic thin-film transistors for circuit and display applications. IEEE Trans. Electron Dev. 46, 1258–1262 (1999).

    Article  CAS  Google Scholar 

  6. Dimitrakopoulos, C. D., Purushothaman, S., Kymissis, J., Callegari, A. & Shaw, J. M. Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science 284, 822–824 (1999).

    Article  Google Scholar 

  7. Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    Article  CAS  Google Scholar 

  8. Sirringhaus, H. et al. Two-dimensional charge transport in self-organised, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

    Article  CAS  Google Scholar 

  9. Afzali, A., Dimitrakopoulos, C. D. & Breen, T. L. High-performance, solution-processed organic thin film transistors from a novel pentacene precursor. J. Am. Chem. Soc. 124, 8812–8813 (2002).

    Article  CAS  Google Scholar 

  10. Anthony, J. E., Brooks, J. S., Eaton, D. L. & Parkin, S. R. Functionalized pentacene: Improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 123, 9482–9483 (2001).

    Article  CAS  Google Scholar 

  11. Nelson, S. F., Lin, Y. Y., Gundlach, D. J. & Jackson, T. N. Temperature-independent transport in high-mobility pentacene transistors. Appl. Phys. Lett. 72, 1854–1856 (1998).

    Article  CAS  Google Scholar 

  12. Herwig, P. T. & Müllen, K. A soluble pentacene precursor: Synthesis, solid-state conversion into pentacene and application in a field-effect transistor. Adv. Mater. 11, 480–483 (1999).

    Article  CAS  Google Scholar 

  13. Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999).

    Article  CAS  Google Scholar 

  14. Mitzi, D. B., Kosbar, L. L., Murray, C. E., Copel, M. & Afzali, A. High-mobility ultrathin semiconducting films prepared by spin coating. Nature 428, 299–303 (2004).

    Article  CAS  Google Scholar 

  15. Katz, H. E. et al. Mesophase transitions, surface functionalization, and growth mechanism of semiconducting 6PTTP6 films from solution. J. Phys. Chem. B 108, 8567–8571 (2004).

    Article  CAS  Google Scholar 

  16. Chabinyc, M. L., Wong, W. S., Paul, K. E. & Street, R. A. Fabrication of arrays of organic polymeric thin-film transistors using self-aligned microfluidic channels. Adv. Mater. 15, 1903–1907 (2003).

    Article  CAS  Google Scholar 

  17. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers (Oxford Univ. Press, New York, 1982).

    Google Scholar 

  18. Carpay, F. M. A. & Cense, W. A. Production of in situ composites by unidirectional crystalline decomposition of non-crystalline solids. Nat. Phys. Sci. 241, 19–20 (1973).

    Article  CAS  Google Scholar 

  19. Henn, D. E., Williams, W. G. & Gibbons, D. J. Crystallographic data for an orthorhombic form of rubrene. J. Appl. Crystallogr. 4, 256 (1971).

    Article  CAS  Google Scholar 

  20. Vrijmoeth, J., Stok, R. W., Veldman, R. M., Schoonveld, W. A. & Klapwijk, T. M. Single crystallites in “planar polycrystalline” oligothiophene films: Determination of orientation and thickness by polarization microscopy. J. Appl. Phys. 83, 3816–3824 (1998).

    Article  CAS  Google Scholar 

  21. Kepler, R. G. in Organic Semiconductors (eds Brophy, J. & Buttrey, J. W.) 1–20 (Macmillan, New York, 1962).

    Google Scholar 

  22. Bakhuis Roozeboom, H.W. Erstarrungspunkte der Mischkrystalle zweier Stoffe. Z. Phys. Chem. 30, 385–412 (1899).

    Article  Google Scholar 

  23. Meijer, E. J. et al. Dopant density determination in disordered organic field-effect transistors. J. Appl. Phys. 93, 4831–4835 (2003).

    Article  CAS  Google Scholar 

  24. Bakhuis Roozeboom, H. W. Die Heterogenen Gleichgewichte vom Standpunkte der Phasenlehre (Vieweg, Braunschweig, 1901).

    Google Scholar 

  25. Gelinck, G. H. et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nature Mater. 3, 106–110 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to our colleagues at Philips, S. Setayesh and E. Cantatore, for discussions. K. Pernstich and D. Gundlach (ETH Zürich) provided invaluable and highly critical data regarding vacuum-evaporated rubrene devices, for which we are deeply grateful. M. Beenhakkers (Philips) prepared the test devices for the present work. C.T. would like to thank the DPI for financial support. Furthermore, the EUROSCORES SONS is acknowledged for support. N.S. is very grateful to the Swiss Federal Office for Education and Science for a post-doctoral fellowship in the framework of the EU research programme IHP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie Stingelin-Stutzmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stingelin-Stutzmann, N., Smits, E., Wondergem, H. et al. Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics. Nature Mater 4, 601–606 (2005). https://doi.org/10.1038/nmat1426

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1426

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing