Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A triple-network tricontinuous cubicliquid crystal

Abstract

Soft matter such as surfactant–water systems, block copolymers or liquid crystals can form periodic structures on nanometre to micrometre scales. This property can be used for templating nanoporous ceramics, surface patterning for electronic devices, or generation of photonic materials. Much attention has been paid to structures appearing between the layer and cylinder phases, the three so-called bicontinuous cubic phases. These are formed by two continuous interpenetrating networks of channels. In this article we describe a related phase, which has the first reported structure consisting of three interpenetrating infinite networks. It is a thermotropic (solvent-free) liquid crystal of cubic symmetry Imm. The structure is one of the most complex in liquid crystals, and is determined by direct Fourier reconstruction of electron density. We discuss the possible rationale for the existence of such a phase, its structural relationship with the bicontinuous phases, and its position in the phase diagram.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Network models of the three known bicontinuous cubic phases in soft matter.
Figure 2: Chemical structures and X-ray diffraction patterns of the liquid-crystal phase under study.
Figure 3: Isosurface representations of the reconstructed three-dimensional electron-density map.
Figure 4: Network model of the Imm (I) structure and the average radial distributions of volume for lamellar, columnar and different cubic structures.

Similar content being viewed by others

References

  1. Demus, D., Goodby, J. W., Gray, G. W. & Spiess, H. W. (eds) Handbook of Liquid Crystals (Wiley-VCH, Cambridge, 1998).

    Google Scholar 

  2. Seddon, J. M. Lyotropic phase behavior of biological amphiphiles. Ber. Bunsen. Phys. Chem. 100, 380–393 (1996).

    Article  CAS  Google Scholar 

  3. Hamley, I. W. The Physics of Block Copolymers (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  4. Thomas, E. L., Anderson, D. M., Henkee, C. S. & Hoffman, D. Periodic area-minimizing surfaces in block copolymers. Nature 334, 598–601 (1998).

    Article  Google Scholar 

  5. Hyde, S. T. Bicontinuous structures in lyotropic liquid crystals and crystalline hyperbolic surfaces. Curr. Opin. Solid State Mater. 1, 653–662 (1996).

    Article  CAS  Google Scholar 

  6. Schoen, A. H. Infinite periodic minimal surfaces without intersections. (NASA Technical Note D-5541, Washington DC, 1970).

  7. Suzuki, J., Seki, M. & Matsushita, Y. The tricontinuous double-gyroid structure from a three-component polymer system. J. Chem. Phys. 112, 4862–4868 (2000).

    Article  CAS  Google Scholar 

  8. Gozdz, W. T. & Holyst, R. Triply periodic surfaces and multiply continuous structures from the Landau model of microemulsions. Phys. Rev. E 54, 5012–5027 (1996).

    Article  CAS  Google Scholar 

  9. Hyde, S. T. & Schroder, G. E. Novel surfactant mesostructural topologies: between lamellae and columnar (hexagonal) forms. Curr. Opin. Colloid Interface Sci. 8, 5–14 (2003).

    Article  CAS  Google Scholar 

  10. Tardieu, A. & Billard, J. On the structure of the “smectic D modification”. J. Physique C3 37, 79–81 (1976).

    Google Scholar 

  11. Levelut A. M. & Fang, Y. Structural study of the lamellar to columnar transition in thermotropic liquid crystals: the thermotropic cubic phase of some phasmidic molecules. J. Physique Colloque C7 51, 229–236 (1990).

    Google Scholar 

  12. Levelut A. M. & Clerc, M. Structural investigations on 'smectic D' and related mesophases. Liquid Crystals 24, 105–115 (1998).

    Article  CAS  Google Scholar 

  13. Impéror-Clerc, M. Thermotropic cubic phases. Curr. Opin. Colloid and Interface Science (in the press).

  14. Kutsumizu, S., Morita, K., Yano S. & Nojima, S. Cubic phases of binary systems of 4′-n-tetradecyloxy-3′-nitrobiphenyl-4-carboxylic acids (ANBC-14)-n-alkane. Liquid Crystals 29, 1459–1468 (2002).

    Article  CAS  Google Scholar 

  15. Saito, K. & Sorai. M. Quasi-binary picture of thermotropic liquid crystals and its application to cubic mesophases. Chem. Phys. Lett. 366, 56–61 (2002).

    Article  CAS  Google Scholar 

  16. Yeardley, D. J. P., Ungar, G., Percec, V., Holerca N. M. & Johansson, G. Spherical supramolecular minidendrons self-organised in an “inverse micellar”-like thermotropic body centred cubic liquid crystal phase. J. Am. Chem. Soc. 122, 1684–1689 (2000).

    Article  CAS  Google Scholar 

  17. Duan, H., Hudson, S. D., Ungar, G., Holerca M. N. & Percec, V. Definitive support by transmission electron microscopy, electron diffraction and electron density calculations for the formation of a BCC lattice from poly{n-[3,4,5-tris(n-dodecan-l-yloxy)benzoyl]ethyleneimine. Chem. Eur. J. 7, 4134–4141 (2001).

    Article  CAS  Google Scholar 

  18. Imperor-Clerc, M., Veber M. & Levelut, A. M. Phase transition between single crystals of two thermotropic cubic phases from a mixture of 3,5-didodecyloxybenzoic acid and C18-ANBC. Chem. Phys. Chem. 533–535 (2001).

  19. Kutsumizu, S., Morita, K., Ichikawa, T. & Yano, S. Cubic phases of 4′-n-alkoxy-3′-nitrobiphenyl-4-carboxylic acids (ANBC-n). Liquid Crystals 29, 1447–1458 (2002).

    Article  CAS  Google Scholar 

  20. Malthete, J., Nguyen, H. T. & Destrade, C. Phasmids and polycatenar mesogens. Liquid Crystals 13, 171–187 (1993).

    Article  CAS  Google Scholar 

  21. Imperor-Clerc, M., Sotta, P. & Veber, M. Crystal shapes of cubic mesophases in pure and mixed carboxylic acids observed by optical microscopy. Liquid Crystals 27, 1001–1009 (2000).

    Article  CAS  Google Scholar 

  22. Malthete, J., Levelut, A. M. & Nguyen, H. T. Phasmids: a new class of liquid crystals. J. Physique Lett. 46, L875–880 (1985).

    Article  Google Scholar 

  23. Ungar, G., Zeng, X. B., Liu, Y., Percec, V. & Cho, W. D. Giant supramolecular liquid crystal lattice. Science 299, 1208–1211 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Gleeson for helping to set up the experiment at Daresbury Synchrotron and Council for the Central Laboratory of the Research Councils for granting the beamtime. Jacques Malthête is gratefully acknowledged for giving us compound I. We are grateful to Anne-Marie Levelut and Michèle Veber for fruitful discussions during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangbing Zeng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 - S4 and supplementary table S1 (PDF 381 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, X., Ungar, G. & Impéror-Clerc, M. A triple-network tricontinuous cubicliquid crystal. Nature Mater 4, 562–567 (2005). https://doi.org/10.1038/nmat1413

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1413

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing