Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Highly conductive nanolayers on strontium titanate produced by preferential ion-beam etching

Abstract

Developing fabrication methods for electronically active nanostructures is an important challenge of modern science and technology. Fabrication efforts1,2,3,4 for crystalline materials have been focused on state-of-the-art epitaxial growth techniques. These techniques are based on deposition of precisely controlled combinations of various materials on a heated substrate. We report a method that does not require deposition and transforms a nanoscale layer of a complex crystalline compound into a new material using low-energy ion-beam preferential etching (IBPE). We demonstrate this method by transforming a widely used5,6,7,8,9,10 insulator model system, SrTiO3, into a transparent conductor. Most significantly, the resistivity decreases with decreasing temperature as T2.5±0.3 and eventually falls below that of room-temperature copper. These transport measurements imply a crystal quality in the conduction channel comparable to that obtained1 with the highest-quality growth techniques. The universality of low-energy IBPE implies wide potential applicability to fabrication of other nanolayers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photographs of a double-sided polished SrTiO3 sample ion-bombarded on the left half.
Figure 2: Two-probe resistance versus ion-beam exposure time.
Figure 3: Four-probe resistivity versus temperature for several samples.
Figure 4

Similar content being viewed by others

References

  1. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  2. Bozovic, I. et al. No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor. Nature 422, 873–875 (2003).

    Article  CAS  Google Scholar 

  3. Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004).

    Article  CAS  Google Scholar 

  4. Pallecchi, I. et al. SrTiO3-based metal-insulator-semiconductor heterostructures. Appl. Phys. Lett. 78, 2244–2246 (2001).

    Article  CAS  Google Scholar 

  5. Muller, D. A., Nakagawa, N., Ohtomo, A., Grazul, J. L. & Hwang, H. Y. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3 . Nature 430, 657–661 (2004).

    Article  CAS  Google Scholar 

  6. Schooley, J. F., Hosler, W. R. & Cohen, M. L. Superconductivity in semiconducting SrTiO3 . Phys. Rev. Lett. 12, 474–475 (1964).

    Article  CAS  Google Scholar 

  7. Bednorz, J. G. & Müller, K. A. Perovskite-type oxides - The new approach to high-Tc superconductivity. Rev. Mod. Phys. 60, 585–600 (1988).

    Article  CAS  Google Scholar 

  8. Gopalan, S., Balu, V., Lee, J. H., Hee-Han, J. & Lee, J. C. Study of the electronic conduction mechanism in Nb-doped SrTiO3 thin films with Ir and Pt electrodes. Appl. Phys. Lett. 77, 1526–1528 (2000).

    Article  CAS  Google Scholar 

  9. Ahn, C. H., Triscone, J. M. & Mannhart, J. Electric field effect in correlated oxide systems. Nature 424, 1015–1018 (2003).

    Article  CAS  Google Scholar 

  10. Zhao, T. et al. Colossal magnetoresistive manganite-based ferroelectric field-effect transistor on Si. Appl. Phys. Lett. 84, 750–752 (2004).

    Article  CAS  Google Scholar 

  11. Cooper, C. M., Nayar, P. S., Hale, E. B. & Gerson, R. Conductive strontium titanate layers produced by boron-ion implantation. J. Appl. Phys. 50, 2826–2831 (1979).

    Article  CAS  Google Scholar 

  12. Albrecht, J. et al. Surface patterning of SrTiO3 by 30 keV ion irradiation. Surf. Sci. Lett. 547, L847–L852 (2003).

    Article  CAS  Google Scholar 

  13. Yang, B., Townsend, P. D., Fan, Y. & Fromknecht, R. Effects of the ion-implantation on the thermoluminescence spectra of strontium titanate. Nucl. Instrum. Methods Phys. Res. B 226, 549–555 (2004).

    Article  CAS  Google Scholar 

  14. Henrich, V. E., Dresselhaus, G. & Zeiger, H. J. Surface defects and the electronic structure of SrTiO3 surfaces. Phys. Rev. B 17, 4908–4921 (1978).

    Article  CAS  Google Scholar 

  15. Nastasi, M., Mayer, J. W. & Hirvonen, J. K. Ion–Solid Interactions: Fundamentals and Applications (Cambridge Univ. Press, Cambridge, 1996).

    Book  Google Scholar 

  16. Rabalais, J. W. (ed.) Low Energy Ion–Surface Interactions Ch. 9 (Wiley, Chichester, 1994).

  17. Harper, J. M. E., Cuomo, J. J. & Kaufman, H. R. Technology and applications of broad-beam ion sources used in sputtering. Part II. Applications. J. Vac. Sci. Technol. 21, 737–756 (1982).

    Article  CAS  Google Scholar 

  18. Tsuei, C. C., Gupta, A. & Koren, G. Quadratic temperature dependence of the in-plane resistivity in superconducting Nd1.85CuO4 - Evidence for Fermi-liquid normal state. Physica C 161, 415–422 (1989).

    Article  CAS  Google Scholar 

  19. Frederikse, H. P., Hosler, W. R. & Thurber, W. R. Magnetoresistance of semiconducting SrTiO3 . Phys. Rev. 143, 648–651 (1966).

    Article  CAS  Google Scholar 

  20. Lee, C., Yahia, J. & Brebner, J. L. Electronic conduction in slightly reduced strontium titanate at low temperatures. Phys. Rev. B 3, 2525–2533 (1971).

    Article  Google Scholar 

  21. Tufte, O. N. & Chapman, P. W. Electron mobility in semiconducting strontium titanate. Phys. Rev. 155, 796–802 (1967).

    Article  CAS  Google Scholar 

  22. Frederikse, H. P. R. & Hosler, W. R. Hall mobility in SrTiO3 . Phys. Rev. 161, 822–827 (1967).

    Article  CAS  Google Scholar 

  23. Wenli, D., Ohgi, T., Nejo, H. & Fujita, D. Characteristics of indium tin oxide films deposited by DC and RF magnetron sputtering. Jpn J. Appl. Phys. 40, 3364–3369 (2001).

    Article  Google Scholar 

  24. Maruyama, T. & Fukui, K. Indium tin oxide films prepared by chemical vapor deposition. J. Appl. Phys. 70, 3848–3851 (1991).

    Article  CAS  Google Scholar 

  25. Rabalais, J. W. (ed.) Low Energy Ion–Surface Interactions Ch. 7 (Wiley, Chichester, 1994).

Download references

Acknowledgements

The authors would like to thank J. B. Chlistunoff, I. Campbell, T. Kimura and X. Gao for their help. This work was supported by the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Reagor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reagor, D., Butko, V. Highly conductive nanolayers on strontium titanate produced by preferential ion-beam etching. Nature Mater 4, 593–596 (2005). https://doi.org/10.1038/nmat1402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1402

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing