Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pressure-induced ferromagnetism in (In,Mn)Sb dilute magnetic semiconductor

Abstract

Recent advances in III1–xMnxV ferromagnetic semiconductors (for example in Ga1–xMnxAs) have demonstrated that electrical control of their spin properties can be used for manipulation and detection of magnetic signals1,2. The Mn2+ ions in these alloys provide magnetic moments, and at the same time act as a source of valence-band holes that mediate the Mn2+–Mn2+ interactions3,4,5. This coupling results in the ferromagnetic phase. In earlier work2,6it was shown that the ferromagnetic state can be enhanced or suppressed by varying the carrier density. Here we demonstrate that, by using hydrostatic pressure to continuously tune the wavefunction overlap, one can control the strength of ferromagnetic coupling without any change in the carrier concentration. Tuning the exchange coupling by this process increases the magnetization spectacularly, and can even induce the ferromagnetic phase in an initially paramagnetic alloy. These results may open new directions for strain-engineering of nanodevices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature dependence of the resistivity at ambient hydrostatic pressure p = 100 kPa.
Figure 2: Temperature dependence of the resistivity measured at various hydrostatic pressures.
Figure 3: Hall resistivity as a function of magnetic field taken at several hydrostatic pressures.

Similar content being viewed by others

References

  1. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539–542 (2004).

    Article  CAS  Google Scholar 

  2. Chiba, D., Yamanouchi, M., Matsukura, F. & Ohno, H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003).

    Article  CAS  Google Scholar 

  3. Ohno, H. Properties of ferromagnetic III–V semiconductors. J. Mag. Magn. Mater. 200, 110–129 (1999).

    Article  CAS  Google Scholar 

  4. Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).

    Article  CAS  Google Scholar 

  5. König, J., Schliemann, J., Jungwirth, T. & MacDonald, A. H. in Electronic Structure and Magnetism of Complex Materials (eds Singh, D. J. & Papaconstantopoulos, D. A.) (Springer, Berlin, 2002).

    Google Scholar 

  6. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  7. Wojtowicz, T. et al. In1–xMnxSb—a narrow-gap ferromagnetic semiconductor. Appl. Phys. Lett. 82, 4310–4313 (2003).

    Article  CAS  Google Scholar 

  8. Crepieux, A. & Bruno, P. Theory of the anomalous Hall effect from the Kubo formula and the Dirac equation. Phys. Rev. B 64, 014416 (2001).

    Article  Google Scholar 

  9. Jungwirth, T., Niu, Q. & MacDonald, A. H. Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 88, 207208 (2002).

    Article  CAS  Google Scholar 

  10. Sunadaram, G. & Niu, Q. Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects. Phys. Rev. B 59, 14915–14925 (1999).

    Article  Google Scholar 

  11. Suski, Y., Litwin-Staszewska, E. & Plesiewicz, W. Pressure dependence of resistivity and magnetoresistivity in InSb below 1 K. Solid State Commun. 57, 575–578 (1986).

    Article  CAS  Google Scholar 

  12. Jungwirth, T., König, J., Sinova, J., Kučera, J. & MacDonald, A. H. Curie temperature trends in (III,Mn)V ferromagnetic semiconductors. Phys. Rev. B 66, 012402 (2002).

    Article  Google Scholar 

  13. Dietl, T. Ferromagnetic semiconductors. Semicond. Sci. Technol. 17, 377–392 (2002).

    Article  CAS  Google Scholar 

  14. Dietl, T., Ohno, H. & Matsukara, F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys. Rev. B 63, 195205 (2001).

    Article  Google Scholar 

  15. Giebultowicz, T. M., Rhyne, J. J., Furdyna, J. K. & Klosowski, P. Inelastic neutron scattering studies of II–VI diluted magnetic semiconductors. J. Appl. Phys. 67, 5096–5101 (1990).

    Article  CAS  Google Scholar 

  16. Qian, L. Q. & Wessels, B. W. Strained-layer InSb/GaSb quantum wells grown by metalorganic vapour phase epitaxy. Appl. Phys. Lett. 63, 628–630 (1993).

    Article  CAS  Google Scholar 

  17. Elman, B. et al. Effect of heat treatment on InGaAs/GaAs quantum wells. J. Appl. Phys. 68, 1351–1353 (1990).

    Article  CAS  Google Scholar 

  18. Welp, U. et al. Uniaxial in-plane magnetic anisotropy of Ga1–xMnxAs. Appl. Phys. Lett. 85, 260–262 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hungarian Science Foundation under grant no. TS040878 and T037451, the DARPA SpinS program, the US National Science Foundation NIRT award DMR 02-10519, the Polish Committee for Scientific Research through SPUB-M funding, and the Alfred P. Sloan Foundation (B.J).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Furdyna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csontos, M., Mihály, G., Jankó, B. et al. Pressure-induced ferromagnetism in (In,Mn)Sb dilute magnetic semiconductor. Nature Mater 4, 447–449 (2005). https://doi.org/10.1038/nmat1388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1388

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing