Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanowire dye-sensitized solar cells


Excitonic solar cells1—including organic, hybrid organic–inorganic and dye-sensitized cells (DSCs)—are promising devices for inexpensive, large-scale solar energy conversion. The DSC is currently the most efficient2 and stable3 excitonic photocell. Central to this device is a thick nanoparticle film that provides a large surface area for the adsorption of light-harvesting molecules. However, nanoparticle DSCs rely on trap-limited diffusion for electron transport, a slow mechanism that can limit device efficiency, especially at longer wavelengths. Here we introduce a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires. The nanowire anode is synthesized by mild aqueous chemistry and features a surface area up to one-fifth as large as a nanoparticle cell. The direct electrical pathways provided by the nanowires ensure the rapid collection of carriers generated throughout the device, and a full Sun efficiency of 1.5% is demonstrated, limited primarily by the surface area of the nanowire array.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The nanowire dye-sensitized cell, based on a ZnO wire array.
Figure 2: Device performance under AM 1.5G illumination.
Figure 3: Comparative performance of nanowire and nanoparticle cells.
Figure 4: Transient mid-infrared absorption traces of dye-sensitized ZnO nanowire (NW) and ZnO nanoparticle (NP) films pumped at 400 nm.


  1. Gregg, B. A. Excitonic solar cells. J. Phys. Chem. B 107, 4688–4698 (2003).

    CAS  Article  Google Scholar 

  2. Nazeeruddin, M. K. et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123, 1613–1624 (2001).

    CAS  Article  Google Scholar 

  3. Wang, P. et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitzer and polymer gel electrolyte. Nature Mater. 2, 402–407 (2003).

    CAS  Article  Google Scholar 

  4. Rensmo, H. et al. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J. Phys. Chem. B 101, 2598–2601 (1997).

    CAS  Article  Google Scholar 

  5. Tennakone, K., Kumara, G. R. R. A., Kottegoda, I. R. M. & Perera, V. P. S. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chem. Commun. 15–16 (1999).

  6. Keis, K., Magnusson, E., Lindström, H., Lindquist, S.-E. & Hagfeldt, A. A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Sol. Energy Mater. Sol. Cells 73, 51–58 (2002).

    Article  Google Scholar 

  7. Krüger, J., Plass, R., Grätzel, M., Cameron, P. J. & Peter, L. M. Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy. J. Phys. Chem. B 107, 7536–7539 (2003).

    Article  Google Scholar 

  8. O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    CAS  Article  Google Scholar 

  9. Fisher, A. C., Peter, L. M., Ponomarev, E. A., Walker, A. B. & Wijayantha, K. G. U. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 104, 949–958 (2000).

    CAS  Article  Google Scholar 

  10. Oekermann, T., Zhang, D., Yoshida, T. & Minoura, H. Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. J. Phys. Chem. B 108, 2227–2235 (2004).

    CAS  Article  Google Scholar 

  11. Nelson, J. Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys. Rev. B 59, 15374–15380 (1999).

    CAS  Article  Google Scholar 

  12. van de Lagemaat, J. & Frank, A. J. Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J. Phys. Chem. B 105, 11194–11205 (2001).

    CAS  Article  Google Scholar 

  13. Kopidakis, N., Schiff, E. A., Park, N.-G., van de Lagemaat, J. & Frank, A. J. Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2 . J. Phys. Chem. B. 104, 3930–3936 (2000).

    CAS  Article  Google Scholar 

  14. Benkstein, K. D., Kopidakis, N., van de Lagemaat, J. & Frank, A. J. Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J. Phys. Chem. B. 107, 7759–7767 (2003).

    CAS  Article  Google Scholar 

  15. Kopidakis, N., Benkstein, K. D., van de Lagemaat, J. & Frank, A. J. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 107, 11307–11315 (2003).

    CAS  Article  Google Scholar 

  16. Kavan, L., Grätzel, M., Gilbert, S. E., Klemenz, C. & Schell, H. J. Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118, 6716–6723 (1996).

    CAS  Article  Google Scholar 

  17. Wagner, P. & Helbig, R. Hall effect and anisotropy of the mobility of the electrons in zinc oxide. J. Phys. Chem. Sol. 35, 327–335 (1974).

    CAS  Article  Google Scholar 

  18. Nakade, S. et al. Dependence of TiO2 nanoparticle preparation methods and annealing temperatures on the efficiency of dye-sensitized solar cells. J. Phys. Chem. B 106, 10004–10010 (2002).

    CAS  Article  Google Scholar 

  19. Frank, A. J., Kopidakis, N. & van de Lagemaat, J. Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coord. Chem. Rev. 248, 1165–1179 (2004).

    CAS  Article  Google Scholar 

  20. Renouard, T. et al. Novel ruthenium sensitizers containing functionalized hybrid tetradentate ligands: synthesis, characterization, and INDO/S analysis. Inorg. Chem. 41, 367–378 (2002).

    CAS  Article  Google Scholar 

  21. Hara, K. et al. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J. Chem. 27, 783–785 (2003).

    CAS  Article  Google Scholar 

  22. Kron, G., Egerter, T., Werner, J. H. & Rau, U. Electronic transport in dye-sensitized nanoporous TiO2 solar cells—comparison of electrolyte and solid-state devices. J. Phys. Chem. B 107, 3556–3564 (2003).

    CAS  Article  Google Scholar 

  23. Greene, L. et al. Low-temperature wafer scale production of ZnO nanowire arrays. Angew. Chem. Int. Edn Engl. 42, 3031–3034 (2003).

    CAS  Article  Google Scholar 

  24. Noack, V., Weller, H. & Eychmüller, A. Electron transport in particulate ZnO electrodes: a simple approach. J. Phys. Chem. B. 106, 8514–8523 (2002).

    CAS  Article  Google Scholar 

  25. Anderson, N. A., Ai, X. & Lian, T. Electron injection dynamics from Ru polypyridyl complexes to ZnO nanocrystalline thin films. J. Phys. Chem. B 107, 14414–14421 (2003).

    CAS  Article  Google Scholar 

  26. Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod–polymer solar cells. Science 295, 2425–2427 (2002).

    CAS  Article  Google Scholar 

  27. Park, N.-G. et al. Morphological and photoelectrochemical characterization of core–shell nanoparticle films for dye-sensitized solar cells: Zn-O type shell on SnO2 and TiO2 cores. Langmuir 20, 4246–4253 (2004).

    CAS  Article  Google Scholar 

Download references


We thank M. Graetzel, A. P. Alivisatos, J. Frechet, B. O'Regan, E. Kadnikova, U. Bach, D. Milliron and I. Gur for discussions, T. Lavarone and S. Hamzehpour for technical assistance and A. P. Alivisatos for use of the solar simulator. This work was supported by the US Department of Energy, Office of Basic Sciences.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5, S6, S7, S8 and S9 (PDF 563 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Law, M., Greene, L., Johnson, J. et al. Nanowire dye-sensitized solar cells. Nature Mater 4, 455–459 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing