Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra

Abstract

Chiral selective reactivity and redox chemistry of carbon nanotubes are two emerging fields of nanoscience. These areas hold strong promise for producing methods for isolating nanotubes into pure samples of a single electronic type, and for reversible doping of nanotubes for electronics applications. Here, we study the selective reactivity of single-walled carbon nanotubes with organic acceptor molecules. We observe spectral bleaching of the nanotube electronic transitions consistent with an electron-transfer reaction occurring from the nanotubes to the organic acceptors. The reaction kinetics are found to have a strong chiral dependence, with rates being slowest for large-bandgap species and increasing for smaller-bandgap nanotubes. The chiral-dependent kinetics can be tuned to effectively freeze the reacted spectra at a fixed chiral distribution. Such tunable redox chemistry may be important for future applications in reversible non-covalent modification of nanotube electronic properties and in chiral selective separations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-dependent redox bleaching of fluorescence spectra.
Figure 2: Relative potential energies.
Figure 3: Recovery of nanotube fluorescence.
Figure 4: Nanotube first and second van Hove absorbance spectra.
Figure 5: Time evolution of Raman spectra of the radial breathing mode region.
Figure 6: Chirality-dependent kinetics.
Figure 7: Tunable chirality distributions.
Figure 8: De-aerated bleaching behaviour.

Similar content being viewed by others

References

  1. Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Book  Google Scholar 

  2. Bachilo, S. M. et al. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003).

    Article  CAS  Google Scholar 

  3. Maruyama, S., Miyauchi, Y., Murakami, Y. & Chiashi, S. Synthesis of single-walled carbon nanotubes with narrow diameter-distribution from fullerene. Chem. Phys. Lett. 375, 553–559 (2003).

    Article  CAS  Google Scholar 

  4. Miyauchi, Y., Chiashi, S., Murakami, Y., Hayashida, Y. & Maruyama, S. Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol. Chem. Phys. Lett. 387, 198–203 (2004).

    Article  CAS  Google Scholar 

  5. Banerjee, S. & Wong, S. S. Selective metallic tube reactivity in the solution-phase osmylation of single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 2073–2081 (2004).

    Article  CAS  Google Scholar 

  6. Banerjee, S. & Wong, S. S. Demonstration of diameter-selective reactivity in the sidewall ozonation of SWNTs by resonance Raman spectroscopy. Nano Lett. 4, 1445–1450 (2004).

    Article  CAS  Google Scholar 

  7. Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003).

    Article  CAS  Google Scholar 

  8. Kavan, L., Rapta, P. & Dunsch, L. In situ Raman and Vis-NIR spectroelectrochemistry at single-walled carbon nanotubes. Chem. Phys. Lett. 328, 363–368 (2000).

    Article  CAS  Google Scholar 

  9. Kavan, L. et al. Electrochemical tuning of electronic structure of single-walled carbon nanotubes: in-situ Raman and vis-NIR study. J. Phys. Chem. B 105, 10764–10771 (2001).

    Article  CAS  Google Scholar 

  10. Stoll, M., Rafailov, P. M., Frenzel, W. & Thomsen, C. Electrochemical and Raman measurements on single-walled carbon nanotubes. Chem. Phys. Lett. 375, 625–631 (2003).

    Article  CAS  Google Scholar 

  11. Okazaki, K., Nakato, Y. & Murakoshi, K. Absolute potential of the Fermi level of isolated single-walled carbon nanotubes. Phys. Rev. B 68, 035434 (2003).

    Article  Google Scholar 

  12. Corio, P., Jorio, A., Demir, N. & Dresselhaus, M. S. Spectro-electrochemical studies of single wall carbon nanotube films. Chem. Phys. Lett. 392, 396–402 (2004).

    Article  CAS  Google Scholar 

  13. Strano, M. S. et al. Reversible, band-gap-selective protonation of single-walled carbon nanotubes in solution. J. Phys. Chem. B 107, 6979–6985 (2003).

    Article  CAS  Google Scholar 

  14. Weisman, R. B., Bachilo, S. M. & Tsyboulski, D. Fluorescence spectroscopy of single-walled carbon nanotubes in aqueous suspension. Appl. Phys. A 78, 1111–1116 (2004).

    Article  CAS  Google Scholar 

  15. Zheng, M. & Diner, B. A. Solution redox chemistry of carbon nanotubes. J. Am. Chem. Soc. 126, 15490–15494 (2004).

    Article  CAS  Google Scholar 

  16. Chattopadhyay, D., Galeska, I. & Papadimitrakopoulos, F. A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc. 125, 3370–3375 (2003).

    Article  CAS  Google Scholar 

  17. Zheng, M. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003).

    Article  CAS  Google Scholar 

  18. Huang, S. M., Maynor, B, Cai, X. Y. & Liu, J. Ultralong, well-aligned single-walled carbon nanotube architectures on surfaces. Adv. Mater. 15, 1651–1655 (2003).

    Article  CAS  Google Scholar 

  19. Zheng, L. et al. Ultralong single-wall carbon nanotubes. Nature Mater. 3, 673–676 (2004).

    Article  CAS  Google Scholar 

  20. Collins, P. G., Arnold, M. S. & Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–713 (2001).

    Article  CAS  Google Scholar 

  21. An, L., Lu, C. & Liu, J. A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J. Am. Chem. Soc. 126, 10520–10521 (2004).

    Article  CAS  Google Scholar 

  22. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  CAS  Google Scholar 

  23. Jana, A. K., Mukhopadhyay, S. K. & Bhowmik, B. B. Absorption spectra of 7, 7, 8, 8-tetracyanoquinodimethane in micellar solutions. Spectrochim. Acta A 57, 2687–2893 (2001).

    Article  CAS  Google Scholar 

  24. Moore, V. C., Strano, M. S., Haroz, E. H., Hauge, R. H. & Smalley, R. E. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3, 1379–1382 (2003).

    Article  CAS  Google Scholar 

  25. Doorn, S. K., Heller, D. A., Barone, P. W., Usrey, M. L. & Strano, M. S. Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution. Appl. Phys. A 78, 1147–1155 (2004).

    Article  CAS  Google Scholar 

  26. O'Connell, M. J., Sivaram, S. & Doorn, S. K. Near-infrared resonance Raman excitation profile studies of single-walled carbon nanotube intertube interactions: a direct comparison of bundled and individually dispersed HiPco nanotubes. Phys. Rev. B 69, 235415 (2004).

    Article  Google Scholar 

  27. Zhao, J., Han, J. & Lu, J. P. Work functions of pristine and alkali-metal intercalated carbon nanotubes and bundles. Phys. Rev. B 65, 193401 (2002).

    Article  Google Scholar 

  28. Lai, R. Y. & Bard, A. J. Electrogenerated chemiluminescence 71. Photophysical, electrochemical, and electrogenerated chemiluminescent properties of selected dipyrromethene-BF2 dyes. J. Phys. Chem. B 107, 5036 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ming Zheng for sharing his results on K2IrCl6 oxidation of nanotubes before publication. M.O'C. acknowledges the support of the DCI postdoctoral fellowship program. This work was supported in part by the LANL LDRD program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen K. Doorn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2 and S3 (PDF 213 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Connell, M., Eibergen, E. & Doorn, S. Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nature Mater 4, 412–418 (2005). https://doi.org/10.1038/nmat1367

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1367

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing