Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics

Abstract

Certain proteins undergo a substantial conformational change in response to a given stimulus. This conformational change can manifest in different manners and result in an actuation, that is, catalytic or signalling event, movement, interaction with other proteins, and so on1,2,3,4,5,6. In all cases, the sensing–actuation process of proteins is initiated by a recognition event that translates into a mechanical action. Thus, proteins are ideal components for designing new nanomaterials that are intelligent and can perform desired mechanical actions in response to target stimuli. A number of approaches have been undertaken to mimic nature's sensing–actuating process1,2,3,4,5. We now report a new hybrid material that integrates genetically engineered proteins within hydrogels capable of producing a stimulus-responsive action mechanism. The mechanical effect is a result of an induced conformational change and binding affinities of the protein in response to a stimulus. The stimuli-responsive hydrogel exhibits three specific swelling stages in response to various ligands offering additional fine-tuned control over a conventional two-stage swelling hydrogel. The newly prepared material was used in the sensing, and subsequent gating and transport of biomolecules across a polymer network, demonstrating its potential application in microfluidics and miniaturized drug-delivery systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Swelling of stimuli-responsive hydrogel.
Figure 2: Reversible swelling and kinetics of stimuli-responsive hydrogel.
Figure 3: Controlled transport of molecules by stimulus-induced hydrogel swelling.
Figure 4: Incorporation of hydrogels in microfluidic systems.

Similar content being viewed by others

References

  1. Soong, R. K. et al. Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555–1558 (2000).

    Article  CAS  Google Scholar 

  2. Liu, H. et al. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nature Mater. 1, 173–177 (2002).

    Article  CAS  Google Scholar 

  3. Kroger, N., Deutzmann, R. & Sumper, M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286, 1129–1132 (1999).

    Article  CAS  Google Scholar 

  4. Brott, L. L. et al. Ultrafast holographic nanopatterning of biocatalytically formed silica. Nature 413, 291–293 (2001).

    Article  CAS  Google Scholar 

  5. Meyer, D. E. & Chilkoti, A. Purification of recombinant proteins by fusion with thermally responsive polypeptides. Nature Biotechnol. 17, 1112–1115 (1999).

    Article  CAS  Google Scholar 

  6. Knoblauch, M. et al. ATP-independent contractile proteins from plants. Nature Mater. 2, 600–603 (2003).

    Article  CAS  Google Scholar 

  7. Beebe, D. J. et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000).

    Article  CAS  Google Scholar 

  8. Byrne, M. E., Park, K. & Peppas, N. A. Molecular imprinting within hydrogels. Adv. Drug Del. Rev. 54, 149–161 (2002).

    Article  CAS  Google Scholar 

  9. Galaev, I. Y. & Mattiasson, B. 'Smart' polymers and what they could do in biotechnology and medicine. TIBTECH 17, 335–340 (1999).

    Article  CAS  Google Scholar 

  10. Obaidat, A. A. & Park, K. Characterization of protein release through glucose-sensitive hydrogel membranes. Biomaterials 18, 801–806 (1997).

    Article  CAS  Google Scholar 

  11. Torres-Lugo, M. & Peppas, N. A. Preparation and characterization of P(MAA-g-EG) nanospheres for protein delivery applications. J. Nanoparticle Res. 4, 73–81 (2002).

    Article  CAS  Google Scholar 

  12. Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Del. Rev. 43, 3–12 (2002).

    Article  Google Scholar 

  13. Guiseppi-Elie, A., Brahim, S. I. & Narinesingh, D. A chemically synthesized artificial pancreas: release of insulin from glucose-responsive hydrogels. Adv. Mater. 14, 743–746 (2002).

    Article  CAS  Google Scholar 

  14. Van der Linden, H. J., Herber, S., Olthuis, W. & Bergveld, P. Stimuli-sensitive hydrogels and their applications in chemical (micro)analysis. Analyst 128, 325–331 (2003).

    Article  CAS  Google Scholar 

  15. Zhao, B. & Moore, J. S. Fast pH- and ionic strength-responsive hydrogels in microchannels. Langmuir 17, 4748–4763 (2001).

    Google Scholar 

  16. Holz, J. H., Holz, J. S., Munro, C. H. & Asher, S. A. Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials. Anal. Chem. 70, 780–781 (1998).

    Article  Google Scholar 

  17. Tanaka, T. et al. Phase transitions in ionic gels. Phys. Rev. Lett. 45, 1636–1639 (1980).

    Article  CAS  Google Scholar 

  18. Zhang, X.-Z., Zhuo, R.-X., Cui, J.-Z. & Zhang, J.-T. A novel thermo-responsive drug delivery system with positive controlled release. Int. J. Pharmaceutics 235, 43–50 (2002).

    Article  CAS  Google Scholar 

  19. Wang, C., Stewart, R. J. & Kopecek, J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397, 417–420 (1999).

    Article  CAS  Google Scholar 

  20. Jager, E. W. H., Smela, E. & Inganas, O. Microfabricating conjugated polymer actuators. Science 290, 1540–1545 (2000).

    Article  CAS  Google Scholar 

  21. Low, L.-M., Seetharaman, S., He, K.-Q. & Madou, M. J. Microactuators toward microvalves for responsive controlled drug delivery. Sens. Actuat. B 67, 149–160 (2000).

    Article  CAS  Google Scholar 

  22. Rosiak, J. M. & Yoshii, F. Hydrogels and their medical applications. Nucl. Instr. Meth. Physics Res. B 151, 56–64 (1999).

    Article  CAS  Google Scholar 

  23. Miyata, T., Uragami, T. & Nakamae, K. Biomolecule-sensitive hydrogels. Adv. Drug Del. Rev. 54, 79–98 (2002).

    Article  CAS  Google Scholar 

  24. Petka, W. A, Harden, J. L., McGrath, K. P., Wirtz, D. & Tirrell, D. A. Reversible hydrogels from self-assembling artificial proteins. Science 281, 389–392 (1998).

    Article  CAS  Google Scholar 

  25. Miyata, T., Asami, N. & Uragami, T. A reversibly antigen-responsive hydrogel. Nature 399, 766–769 (1999).

    Article  CAS  Google Scholar 

  26. Deo, S. K. et al. Responsive drug delivery systems. Anal. Chem. 76, 207A–213A (2003).

    Google Scholar 

  27. Kopecek, J. Swell gels. Nature 417, 388–389 (2002).

    Article  CAS  Google Scholar 

  28. Schauer-Vukasinovic, V. & Daunert, S. Purification of recombinant proteins based on the interaction between a phenothiazine-derivatized column and a calmodulin fusion tail. Biotechnol. Prog. 15, 513–516 (1999).

    Article  CAS  Google Scholar 

  29. Schauer-Vukasinovic, V., Cullen, L. & Daunert, S. Rational design of a calcium sensing system based on induced conformational changes of calmodulin. J. Am. Chem. Soc. 119, 11102–11103 (1997).

    Article  CAS  Google Scholar 

  30. Douglass, P. M., Salins, L. E., Dikici, E. & Daunert, S. Class-selective drug detection: fluorescently-labeled calmodulin as the biorecognition element for phenothiazines and tricyclic antidepressants. Bioconjugate Chem. 13, 1186–1192 (2002).

    Article  CAS  Google Scholar 

  31. Lu, C.-H., Wang, J. & Deng, K.-L. Imaging and profiling surface microstructures with noninterferometric confocal laser feedback. Appl. Phys. Lett. 66, 2022–2024 (1995).

    Article  CAS  Google Scholar 

  32. Kim, S. & Chu C. Pore structure analysis of swollen dextran-methacrylate hydrogels by SEM and mercury intrusion porosimetry. J. Biomed. Mater. Res. 53, 258–266 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Aaron A. Urbas for assistance generating hydrogel microdome surface maps. This work was supported by the National Institutes of Health (EB003072) and the Kentucky Science & Technology Corporation. J.D.E. acknowledges support from the National Science Foundation-Integrated Graduate Education Research Training program (NSF-IGERT) for a Predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Daunert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 174 kb)

Supplementary Information

Supplementary figures S1, S2, S3 and S4; supplementary table S1 (PDF 895 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrick, J., Deo, S., Browning, T. et al. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nature Mater 4, 298–302 (2005). https://doi.org/10.1038/nmat1352

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1352

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing