Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trans-interface diffusion-controlled coarsening

Abstract

Accurate theoretical predictions of the volume-fraction dependence during diffusion-controlled coarsening of a polydisperse assembly of particles have proved difficult. Here, a new model of coarsening is presented, involving diffusive transport through the coherent interface between ordered and disordered phases, which atomistic calculations show has a ragged structure. The interface is a diffusion bottleneck when the ordered phase is dispersed. It is predicted that the square of the average radius grows linearly with time, that the depletion of solute decreases as the inverse square-root of time, and that there is no effect of volume fraction on kinetics and the scaled particle-size distributions. These differ dramatically from predictions of modern theories of diffusion-controlled coarsening. Data on coarsening in Ni-Al alloys is examined. We show that no other theory is consistent with the experimentally observed absence of an effect of volume fraction on coarsening of ordered γ′ (Ni3Al) precipitates in a disordered Ni-Al (γ) matrix, and the strong volume-fraction dependence of coarsening of γ precipitates in an ordered γ′ matrix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Volume fraction effect on the rate constant k(ƒe) for coarsening of coherent precipitates.
Figure 2: Snapshot and equilibrium composition of the γ/γ′ interface.
Figure 3: Model of the non-equilibrium composition profile around a growing γ′ precipitate of radius r > r* (solid curve) in the new theory.
Figure 4: Data of Ardell and Nicholson7.
Figure 5: The scaled particle size distributions for the data of Ardell and Nicholson7, compared with the predictions of the LSW1,2 and TIDC coarsening theories.
Figure 6: The data of Ardell31 on the kinetics of solute depletion.
Figure 7

Similar content being viewed by others

References

  1. Lifshitz, I. M. & Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).

    Article  Google Scholar 

  2. Wagner, C. Theorie der alterung von niederschlägen durch umlösen (Ostwald-reifung). Z. Elektrochem. 65, 581–591 (1961).

    CAS  Google Scholar 

  3. Ardell, A. J. in Phase Transformations '87 (ed. Lorimer, G. W.) 485–494 (Institute of Metals, London, 1988).

    Google Scholar 

  4. Voorhees, P. W. The theory of Ostwald ripening. J. Stat. Phys. 38, 231–252 (1985).

    Article  Google Scholar 

  5. Voorhees, P. W. Ostwald ripening of two-phase mixtures Annu. Rev. Mater. Sci. 22, 197–215 (1992).

    Article  CAS  Google Scholar 

  6. Thornton, K., Akaiwa, N. & Voorhees, P. W. Dynamics of late-stage phase separation in crystalline solids. Phys. Rev. Lett. 86, 1259–1262 (2001).

    Article  CAS  Google Scholar 

  7. Ardell, A. J. & Nicholson, R. B. The coarsening of γ´ in Ni-Al alloys. J. Phys. Chem. Solids 27, 1793–1804 (1966).

    Article  CAS  Google Scholar 

  8. Ardell, A. J. The growth of gamma prime precipitates in aged Ni-Ti alloys. Metall. Trans. 1, 525–534 (1970).

    Article  CAS  Google Scholar 

  9. Maheshwari, A. & Ardell, A. J. Anomalous coarsening behavior of small volume fractions of Ni3Al precipitates in binary Ni-Al alloys. Acta Metall. Mater. 40, 2661–2667 (1992).

    Article  CAS  Google Scholar 

  10. Kim, D. M. & Ardell, A. J. Coarsening behavior of Ni3Ga precipitates in Ni-Ga alloys: dependence of microstructure and kinetics on volume fraction. Metall. Mater. Trans. A 35, 3063–3069 (2004).

    Article  Google Scholar 

  11. Kim, D. M. & Ardell, A. J. Coarsening of Ni3Ge in binary Ni-Ge alloys: microstructures and volume fraction dependence of kinetics. Acta Mater. 51, 4073–4082 (2003).

    Article  CAS  Google Scholar 

  12. Cho, J.-H. & Ardell, A. J. Coarsening of Ni3Si precipitates at volume fractions from 0.03 to 0.30. Acta Mater. 46, 5907–5916 (1998).

    Article  CAS  Google Scholar 

  13. Kim, D. M. & Ardell, A. J. The volume-fraction dependence of Ni3Ti coarsening kinetics—new evidence of anomalous behavior. Scripta Mater. 43, 381–384 (2000).

    Article  CAS  Google Scholar 

  14. Ardell, A. J. Observations on the effect of volume fraction on the coarsening of γ′ precipitates in binary Ni-Al alloys. Scripta Metall. Mater. 24, 343–346 (1990).

    Article  CAS  Google Scholar 

  15. Chellman, D. J. & Ardell, A. J. The coarsening of γ′ precipitates at large volume fractions. Acta Metall. 22, 577–588 (1974).

    Article  CAS  Google Scholar 

  16. Irissari, A. M., Urcola, J. J. & Fuentes, M. Kinetics of growth of γ´-precipitates in Ni-6.75Al alloy. Mater. Sci. Tech. 1, 516–519.

  17. Cornwell, L. R. & Purdy, G. R. Precipitation of γ in γ′ particles in a nickel-aluminum alloy. Metall. Trans. 5, 780–781 (1974).

    Article  CAS  Google Scholar 

  18. Ma, Y & Ardell, A. J. The (γ + γ′)/ γ′ phase boundary in the Ni-Al phase diagram from 600 to 1200 °C. Z. Metallkd. 94, 972–975 (2003).

    Article  CAS  Google Scholar 

  19. Ma, Y. & Ardell, A. J. Coarsening of γ (Ni-Al solid solution) precipitates in a γ′ (Ni3Al) matrix: a striking contrast in behavior from normal γ/γ′ alloys. Scripta Mater. (in the press).

  20. Ikeda, T. et al. Single-phase interdiffusion in Ni3Al. Acta Mater. 46, 5369–5376 (1998).

    Article  CAS  Google Scholar 

  21. Fujiwara, K. & Horita, Z. Measurement of intrinsic diffusion coefficients of Al and Ni in Ni3Al using Ni/NiAl diffusion couples. Acta Mater. 50, 1571–1579 (2002).

    Article  CAS  Google Scholar 

  22. Watanabe, M., Horita, Z., Sano T. & Nemoto, M. Electron microscopy study of Ni/Ni3Al diffusion-couple interface - II. Diffusivity measurement. Acta Metall. Mater. 42, 3389–3396 (1994).

    Article  CAS  Google Scholar 

  23. Janssen, M. M. P. Diffusion in the nickel-rich part of the nickel-aluminum system at 1000 to 1300 deg. nickel-aluminum (Ni3A1) layer growth, diffusion coefficients, and interface concentrations. Metall. Trans. 4, 1623–1633 (1973).

    CAS  Google Scholar 

  24. Ansara, I., Dupin, N., Lukas, H. L. & Sundman, B. Thermodynamic assessment of the Al-Ni system. J. Alloys Compd 247, 20–30 (1997).

    Article  CAS  Google Scholar 

  25. Huang, W. & Chang, Y. A. A thermodynamic analysis of the Ni-Al system. Intermetallics 6, 487–498 (1998).

    Article  CAS  Google Scholar 

  26. Zhang, F. et al. Application of the cluster-site approximation (CSA) model to the f.c.c. phase in the Ni-Al system. Acta Mater. 51, 207–216 (2003).

    Article  CAS  Google Scholar 

  27. Wang, Y. & Khachaturyan, A. G. Effect of antiphase domains on shape and spatial arrangement of coherent ordered intermetallics. Scripta Metall. Mater. 31, 1425–1430 (1994).

    Article  CAS  Google Scholar 

  28. Mishin, Y. Atomistic modeling of the γ and γ′-phases of the Ni-Al system. Acta Mater. 52, 1451–1467 (2004).

    Article  CAS  Google Scholar 

  29. Hillert, M. On the theory of normal and abnormal grain growth. Acta Metall. 13, 227–238 (1965).

    Article  CAS  Google Scholar 

  30. Todes, O. M. & Khrushchev, V. V. Theory of coagulation and particle growth in sols. III. kinetics of particle growth in a polydisperse system in a vacuum. J. Phys. Chem. (USSR) 21, 301–312 (1947).

    CAS  Google Scholar 

  31. Greenwood, G. W. The growth of dispersed precipitates in solutions. Acta Metall. 4, 243–248 (1956).

    Article  CAS  Google Scholar 

  32. Ardell, A. J. An application of the theory of particle coarsening: the γ´ precipitate in Ni-Al alloys. Acta Metall. 16, 511–516 (1968).

    Article  CAS  Google Scholar 

  33. Livingston, J. D. Critical particle size for precipitation hardening. Trans. AIME 215, 566–571 (1959).

    CAS  Google Scholar 

  34. Mahalingam, K., Gu, B. P., Liedl, G. L. & Sanders, T. H. Jr. Coarsening of δ´ (Al3Li) precipitates in binary aluminum-lithium alloys. Acta Metall. 35, 483–98 (1987).

    Article  CAS  Google Scholar 

  35. Sluiter, M. & Kawazoe, Y. Prediction of matrix-precipitate interfacial free energies: Application to Al-Al3Li. Phys. Rev. B 54, 10381–10384 (1986).

    Article  Google Scholar 

  36. Asta, M. Theoretical study of the thermodynamic properties of α-δ′ interphase boundaries in Al-Li. Acta Mater. 44, 4131–4136 (1996).

    Article  CAS  Google Scholar 

  37. Seyhan, I. et al. Ostwald ripening of solid-liquid Pb-Sn dispersions. Metall. Mater. Trans. A 27, 2470–2478 (1996).

    Article  Google Scholar 

  38. Hoyt, J. J., Asta, M. & Karma, A. Atomistic and continuum modeling of dendritic solidification. Mater. Sci. Eng. R 41, 121–163 (2003).

    Article  Google Scholar 

  39. Coriell, S. R. & Turnbull, D. H. Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts. Acta Metall. 30, 2135–2139 (1982).

    Article  CAS  Google Scholar 

  40. Broughton, J. Q., Gilmer, G. H. & Jackson, K. A. Crystallization rates of a Lennard-Jones liquid. Phys. Rev. Lett. 49, 1496–1500 (1982).

    Article  CAS  Google Scholar 

  41. Vaithyanathan, V. & Chen, L. Q. Coarsening of ordered intermetallic precipitates with coherency stress. Acta Mater. 50, 4061–4073 (2002).

    Article  CAS  Google Scholar 

  42. Jayanth, C. S. & Nash, P. Experimental evaluation of particle coarsening theories. Mater. Sci. Tech. 6, 405–413 (1990).

    Article  CAS  Google Scholar 

  43. Lund, A. C. & Voorhees, P. W. The effects of elastic stress on coarsening in the Ni-Al system. Acta Mater. 50, 2085–2098 (2002).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  45. Kresse, G & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  47. Calderon, H. A. et al. Ostwald ripening in concentrated alloys. Acta Metall. Mater. 42, 991–1000 (1994).

    Article  CAS  Google Scholar 

  48. Ardell, A. J. The Ni-Ni3Al Phase diagram: Thermodynamic modelling and the requirements of coherent equilibrium. Model. Simul. Mater. Sci. 8, 277–286 (2000).

    Article  CAS  Google Scholar 

  49. Ardell, A. J. Interfacial free energies and solute diffusivities from data on Ostwald ripening. Interface Sci. 3, 119–125 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We benefited from helpful discussions with Mark Asta. A.J.A. is grateful to the National Science Foundation for financial support of this research under Grant DMR-0209260. V.O. was supported by the MARCO Focus Center for Functional Engineered Nano Architectonics (FENA) and by the National Science Foundation under Grant DMR-0427638.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alan J. Ardell or Vidvuds Ozolins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardell, A., Ozolins, V. Trans-interface diffusion-controlled coarsening. Nature Mater 4, 309–316 (2005). https://doi.org/10.1038/nmat1340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1340

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing