Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measuring the surface stress polar dependence

Abstract

Although measurements of the polar dependence of the surface free energy are easily available, measurements of the whole polar dependence of the surface stress of a crystal do not exist. Here, we present a procedure that allows the experimental determination of this dependence. For this purpose, electromigration was used to control the kinetic faceting of surface orientations that belong to the equilibrium shape of the crystal, and for each destabilized surface, the period of faceting as well as the crystallographic angles of the appearing facets were measured by atomic force microscopy. The data obtained lead to a set of equations whose mathematical solution, compatible with physical constraints, gives access to the surface stress polar dependence of the whole crystal, and thus to a better understanding of surface stress properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Equilibrium shape and corresponding γ-plot of silicon obtained at 1,373 K from a 3D silicon bulb.
Figure 2: Stereographic representation of the vicinal faces under study.
Figure 3: AFM image of a hill-and-valley structure obtained after annealing a (118) vicinal surface in ultrahigh-vacuum conditions at 1,373 K over 150 h.
Figure 4: Temporal evolution of the wavelength λ (a) and the crystallographic angle β (b) for all the studied vicinal faces.
Figure 5: Schematic representation of the mechanism of kinetic faceting.
Figure 6: Surface stress polar dependence.

Similar content being viewed by others

References

  1. Sundquist, B. A direct determination of the anisotropy of the surface energy of solid Au, Cr, Ni, α-Fe. Acta. Metall. 12, 67–86 (1964).

    Article  CAS  Google Scholar 

  2. Bermond, J. M., Métois, J. J., Egea X. & Floret F. The equilibrium shape of silicon. Surf. Sci. 330, 48–60 (1995).

    Article  CAS  Google Scholar 

  3. Ibach, H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf. Sci. Rep. 29, 193–263 (1999).

    Google Scholar 

  4. Müller, P. & Saùl, A. Elastic effects on surface physics. Surf. Sci. Rep. 54, 157–258 (2004).

    Article  Google Scholar 

  5. Bach, C., Giesen, M., Ibach, H. & Einstein, T. Stress relief in reconstruction. Phys. Rev. Lett. 78, 4225–4228 (1997).

    Article  CAS  Google Scholar 

  6. Filipetti, A. & Fiorentini, V. Faceting and stress of missing-row reconstructed transition-metal (110) surfaces. Surf. Sci. 377, 112–116 (1997).

    Article  Google Scholar 

  7. Olivier, S., Saúl, A. & Tréglia, G. Relation between surface stress and (1x2) reconstruction for (110) fcc transition metal surfaces. Appl. Surf. Sci. 212/213, 866–871 (2003).

    Article  Google Scholar 

  8. Wynblatt, P. & Ku, R. Surface energy and solute strain energy effects in surface segregation. Surf. Sci. 65, 511–531 (1977).

    Article  CAS  Google Scholar 

  9. Ibach, H. The relation between the strain-dependence of the heat of adsorption and the coverage dependence of the adsorption induced surface stress. Surf. Sci. 556, 71–77 (2004).

    Article  CAS  Google Scholar 

  10. Berger, R. et al. Surface stress in the self-assembly of alkanethiols on gold. Science 276, 2021–2024 (1997).

    Article  CAS  Google Scholar 

  11. Marchenko, V. Theory of the equilibrium shape of crystals. JETP 54, 605–607 (1981).

    Google Scholar 

  12. Alerhand, O. Vanderbilt, D., Meade, R. & Joannopoulos J. Spontaneous formation of stress domains on crystal surfaces. Phys. Rev. Lett. 61, 1973–1976 (1988).

    Article  CAS  Google Scholar 

  13. Rousset, S. et al. Self-ordering on crystal surfaces: fundamentals and applications. Mater. Sci. Eng. B 96, 169–177 (2002).

    Article  Google Scholar 

  14. Wulff, G. Zur frage der geschwindigkeit des wachsthums und der auflösung der krystallfläschen. Z. Kristall. 34, 449–480 (1901).

    CAS  Google Scholar 

  15. Herring, C. Some theorems on the free energies of crystal surfaces. Phys. Rev. 82, 87–93 (1951).

    Article  CAS  Google Scholar 

  16. Rousset, S. et al. Self-organization on Au(111) vicinal surfaces and the role of surface stress. Surf. Sci. 422, 33–41 (1999).

    Article  CAS  Google Scholar 

  17. Johnson, R. Construction of filaments surfaces. Phys. Rev. 54, 459–467 (1938).

    Article  CAS  Google Scholar 

  18. Moore, A. Thermal Faceting in Metal Surfaces: Structure, Energetics and Kinetics 155 (American Society for Metals, Metals Park, Ohio, 1962).

    Google Scholar 

  19. Latyshev, A., Litvin L. & Aseev, A. Peculiarities of step bunching on Si(001) surface induced by DC heating. Appl. Surf. Sci. 130/132, 139–145 (1998).

    Article  Google Scholar 

  20. Métois, J. J. & Stoyanov, S. Impact of the growth on the stability-instability transition at Si(111) during step bunching induced by electromigration. Surf. Sci. 440, 407–419 (1999).

    Article  Google Scholar 

  21. Yagi, K., Minoda, H. & Degawa, M. Step bunching, step wandering and faceting self-organization at Silicon surfaces. Surf. Sci. Rep. 43, 45–126 (2001).

    Article  CAS  Google Scholar 

  22. Jeong, H. & Williams, E. Steps on surfaces: experiment and theory. Surf. Sci. Rep. 34, 171–294 (1999).

    Article  CAS  Google Scholar 

  23. Krug, J. & Dobbs, H. Current induced faceting of crystal surfaces. Phys. Rev. Lett. 73, 1947–1950 (1994).

    Article  CAS  Google Scholar 

  24. Stewart, J. & Goldenfeld, N. Spinodal decomposition of a crystal surface. Phys. Rev. A 46, 6505–6512 (1992).

    Article  CAS  Google Scholar 

  25. Liu, F. & Metiu, H. Dynamics of phase separation of crystal surfaces. Phys. Rev. B 48, 5808–5817 (1993).

    Article  CAS  Google Scholar 

  26. Song, S., Mochrie, S. & Stephenson, S. Faceting kinetics of stepped Si(113) surfaces: a time-resolved X-ray scattering study. Phys. Rev. Lett. 74, 5240–5243 (1995).

    Article  CAS  Google Scholar 

  27. Song, S., Yoon, M., Mochrie, S., Stephenson, G. & Milner, S. Faceting kinetics of stepped Si(113) surfaces: dynamic scaling and nanoscale growth. Surf. Sci. 372, 37–63 (1997).

    Article  CAS  Google Scholar 

  28. Sander, D. & Ibach, H. in Physics of Covered Surfaces Vol. 42 (ed. Bonzel, H.) Ch. 4 (Landölt Bornstein New Series Group III, Springer, New York, 2002).

    Google Scholar 

  29. An, T., Yoshimura, M., Ono, I. & Ueda, K. Elemental structure on Si(110) 16x2 revealed by STM. Phys. Rev. B 61, 3006–3011 (2000).

    Article  CAS  Google Scholar 

  30. Song, S., Yoon, M. & Mochrie, S. Faceting, tricriticality and attractive interactions between steps in the orientational phase diagram of silicon surfaces between [113] and [5512] Surf. Sci. 334, 153–169 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge J. Fuhr, G. Tréglia, R. Kern and S. Olivier for helpful discussions and J. P. Astier for the AFM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Müller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Métois, J., Saúl, A. & Müller, P. Measuring the surface stress polar dependence. Nature Mater 4, 238–242 (2005). https://doi.org/10.1038/nmat1328

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1328

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing