Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix


The switching or isomerization speed of photochromic dyes in a rigid polymeric matrix (such as an ophthalmic lens) is generally significantly slower than that observed in the mobile environment of a solution. Here we describe that the attachment of flexible oligomers having a low glass-transition temperature—such as poly(dimethylsiloxane)—to photochromic dyes greatly increases their switching speeds in a rigid polymer matrix. The greatest impact was observed in the thermal fade parameters T1/2 and T3/4—the times it takes for the optical density to reduce by half and three quarters of the initial optical density of the coloured state—which were reduced by 40–95% and 60–99% respectively for spirooxazines, chromenes and an azo dye in a host polymer with a glass-transition temperature of 120 °C. The method does not alter the electronic nature of the dyes but simply protects them from the host matrix and provides greater molecular mobility for the switching process. In addition to ophthalmic lenses, the generic nature of the method may find further utility in data recording or optical switching.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structural changes of spirooxazines, chromenes and azo compounds during photochromic switching.
Figure 2: Near solution-like decolourization speed of a spirooxazine in a rigid polymer matrix.
Figure 3: Intramolecular interaction of PDMS oligmer with dye.
Figure 4: Enhancement of photochromic switching speeds of a chromene and azo dye in a rigid matrix.


  1. 1

    Bouas-Laurent, H. & Durr, H. Organic photochromism. Pure Appl. Chem. 73, 639–665 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Kawata, S. & Kawata, Y. Three-dimensional optical storage using photochromic materials. Chem. Rev. 100, 1777–1788 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Yokoyama, Y. Fulgides for memories and switches. Chem. Rev. 100, 1717–1739 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Irie, M. Diarylethenes for memories and switches. Chem. Rev. 100, 1685–1716 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Berkovic, G., Krongauz, V. & Weiss, V. Spiropyrans and spirooxazines for memories and switches. Chem. Rev. 100, 1741–1753 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Delaire, J. A. & Nakatani, K. Linear and nonlinear optical properties of photochromic molecules and materials. Chem. Rev. 100, 1817–1845 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Higgins, S. Chasing a rainbow. Chem. Brit. June, 26–29 (2003).

  8. 8

    Feringa, B. L. (ed.) Molecular Switches (Wiley-VCH, Weinheim, 2001).

    Google Scholar 

  9. 9

    Guglielmetti, R. in Photochromism - Molecules and Systems, Studies in Organic Chemistry Vol. 40 (eds Dürr, H. & Bous-Laurent, H.) 314–455 (Elsevier Science, Amsterdam, 1990).

    Google Scholar 

  10. 10

    Such, G. K., Evans, R. A, Yee, L. H. & Davis, T. P. Factors influencing photochromism of spiro - compounds within polymeric matrices. J. Macromol. Sci. C 43, 547–579 (2003).

    Article  Google Scholar 

  11. 11

    Krongauz, V. A. in Photochromism: Molecules and Systems Vol. 40 1st edn (eds Dürr, H. & Bous-Laurent, H.) 793–820 (Elsevier Science, Amsterdam; 1990).

    Google Scholar 

  12. 12

    Langer, R. Drug delivery and targeting. Nature 392 (suppl. 30 April), 5–10 (1998).

    CAS  Google Scholar 

  13. 13

    Hermanson, G. T. Bioconjugate Techniques 606–618 (Academic, San Diego, 1996)

    Google Scholar 

  14. 14

    Allen, T. M. & Cullis, P. R. Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Kakishita, T., Matsumoto, K. & Kiyotsukuri, T. Synthesis and NMR study of 9'-substituted spiroindolinonapthoxazine Derivatives. J. Heterocyclic Chem. 29, 1709–1715 (1992).

    CAS  Article  Google Scholar 

  16. 16

    Shagina, L., Buchholz, F., Yitzchaik, S. & Krongauz, V. Searching for photochromic liquid crystals. Liq. Cryst. 7, 643–655 (1990).

    Article  Google Scholar 

  17. 17

    Corns, S. N. et al. Neutral coloring photochromic 2H-naphtho[1,2-b] pyrans and heterocyclic pyrans. US Patent 6,248,264 B241 (2001).

  18. 18

    Evans, R. A. et al. Photochromic compositions and light transmissible articles. World patent WO 2004/041961; PCT/AU03/01453 (2003).

  19. 19

    Walters, R. W. & Van Gemert, B. Hydroxylated/carboxylated naphthopyrans. World patent WO 2001/70719 A2; PCT/US01/05881 (2001).

  20. 20

    Schaudel, B., Guermeur, C., Sanchez, C., Nakatani, K. & Delaire, J. A. Spirooxazine- and spiropyran-doped hybrid organic-inorganic matrixes with very fast photochromic responses. J. Mater. Chem. 7, 61–65 (1997).

    CAS  Article  Google Scholar 

  21. 21

    Hobley, J. et al. Ultrafast photo-dynamics of a reversible photochromic spiropyran. J. Phys. Chem. A 106, 2265–2270 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Hu, A. T., Wang, W.-H. & Lee, H.-J. Photochromism of spirooxazine doped or bonded in polymer matrixes. J. Macromol. Sci. A 33, 803–810 (1996).

    Article  Google Scholar 

  23. 23

    Nakamura, S., Uchida, K., Murakami, A. & Irie, M. Ab initio MO and proton NMR NOE studies of photochromic spironaphthoxazine. J. Org. Chem. 58, 5543–5545 (1993).

    CAS  Article  Google Scholar 

  24. 24

    Maeda, S., Mitsuhashi, K., Osano, Y. T., Nakamura, S. & Ito, M. The molecular design and applications of spirooxazines. Mol. Cryst. Liq. Cryst. A 246, 223–230 (1994).

    CAS  Article  Google Scholar 

  25. 25

    Geftakis, S. & Ball, G. E. Direct observation of a transition metal alkane complex, CpRe(CO)2(cyclopentane), using NMR spectroscopy. J. Am. Chem. Soc. 120, 9953–9954 (1998).

    CAS  Article  Google Scholar 

Download references


We acknowledge the Cooperative Research Centre for Polymers for funding and the Australian Research Council for the award of an Australian Professorial Fellowship to T.P.D.

Author information



Corresponding author

Correspondence to Richard A. Evans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Material A, B, C, D and E (PDF 200 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Evans, R., Hanley, T., Skidmore, M. et al. The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix. Nature Mater 4, 249–253 (2005).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing