Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecularly inherent voltage-controlled conductance switching

Abstract

Molecular electronics has been proposed as a pathway for high-density nanoelectronic devices. This pathway involves the development of a molecular memory device based on reversible switching of a molecule between two conducting states in response to a trigger, such as an applied voltage. Here we demonstrate that voltage-triggered switching is indeed a molecular phenomenon by carrying out studies on the same molecule using three different experimental configurations—scanning tunnelling microscopy, crossed-wire junction, and magnetic-bead junction. We also demonstrate that voltage-triggered switching is distinctly different from stochastic switching, essentially a transient (time-dependent) phenomenon that is independent of the applied voltage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics for STM experiments.
Figure 2: I/V measurements on BPDN.
Figure 3: Consistent two-state behaviour in three different test-beds.
Figure 4: STM images of molecules inserted into an undecanethiol matrix.
Figure 5: Stochastic switching in BPDN.

Similar content being viewed by others

References

  1. Reed, M. A. & Tour, J. M. Computing with molecules. Sci. Am. 282, 86–93 (2000).

    Article  CAS  Google Scholar 

  2. Carroll, R. L. & Gorman, C. B. The genesis of molecular electronics. Angew. Chem. Int. Edn 41, 4378–4400 (2002).

    Article  Google Scholar 

  3. Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    Article  CAS  Google Scholar 

  4. Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999).

    Article  CAS  Google Scholar 

  5. Reed, M. A., Chen, J., Rawlett, A. M., Price, D. W. & Tour, J. M. Molecular random access memory cell. Appl. Phys. Lett. 78, 3735–3737 (2001).

    Article  CAS  Google Scholar 

  6. Chen, J., Su, J., Wang, W. & Reed, M. A. Electronic memory effects in self-assembled monolayer systems. Physica E 16, 17–23 (2003).

    Article  Google Scholar 

  7. Fan, F.-R. F. et al. Electrons are transported through phenylene-ethynylene oligomer monolayers via localized molecular orbitals. J. Am. Chem. Soc. 126, 2568–2573 (2004).

    Article  CAS  Google Scholar 

  8. Donhauser, Z. J. et al. Conductance switching in single molecules through conformational changes. Science 292, 2303–2307 (2001).

    Article  CAS  Google Scholar 

  9. Ramachandran, G. K. et al. A bond-fluctuation mechanism for stochastic switching in wired molecules. Science 300, 1413–1416 (2003).

    Article  CAS  Google Scholar 

  10. Wassel, R. A., Fuierer, R. R., Kim, N. & Gorman, C. B. Stochastic variation in conductance on the nanometer scale: A general phenomenon. Nano Lett. 3, 1617–1620 (2003).

    Article  CAS  Google Scholar 

  11. Chen, J. & Reed, M. A. Electronic transport of molecular systems. Chem. Phys. 281, 127–145 (2002).

    Article  CAS  Google Scholar 

  12. Gaudioso, J., Lauhon, L. J. & Ho, W. Vibrationally mediated negative differential resistance in a single molecule. Phys. Rev. Lett. 85, 1918–1921 (2000).

    Article  CAS  Google Scholar 

  13. Seminario, J. M., Zacarias, A. G. & Derosa, P. A. Theoretical analysis of complementary molecular memory devices. J. Phys. Chem. A 105, 791–795 (2001).

    Article  CAS  Google Scholar 

  14. Seminario, J. M., Zacarias, A. G. & Tour, J. M. Theoretical study of a molecular resonant tunneling diode. J. Am. Chem. Soc. 122, 3015–3020 (2000).

    Article  CAS  Google Scholar 

  15. Seminario, J. M., Córdova, L. E. & Derosa, P. A. An ab initio approach to the calculation of current-voltage characteristics of programmable molecular devices. Proc. IEEE 91, 1958–1975 (2003).

    Article  CAS  Google Scholar 

  16. Donhauser, Z. J. et al. Matrix-mediated control of stochastic single molecule conductance switching. Jpn J. Appl. Phys. 41, 4871–4877 (2002).

    Article  CAS  Google Scholar 

  17. Andres, R. P. et al. “Coulomb staircase” at room temperature in a self-assembled molecular nanostructure. Science 272, 1323–1325 (1996).

    Article  CAS  Google Scholar 

  18. Blum, A. S., Yang, J. C., Shashidhar, R. & Ratna, B. R. Comparing the conductivity of molecular wires with the scanning tunneling microscope. Appl. Phys. Lett. 82, 3322–3324 (2003).

    Article  CAS  Google Scholar 

  19. Kushmerick, J. G. et al. Effect of bond-length alternation in molecular wires. J. Am. Chem. Soc. 124, 10654–10655 (2002).

    Article  CAS  Google Scholar 

  20. Kushmerick, J. G. et al. Understanding charge transport in molecular electronics. Ann. NY Acad. Sci. 1006, 277–290 (2003).

    Article  CAS  Google Scholar 

  21. Tour, J. M. et al. Self-assembled monolayers and multilayers of conjugated thiols α,ω-dithiol, and thioacetyl-containing adsorbates. understanding attachments between potential molecular wires and gold surfaces. J. Am. Chem. Soc. 117, 9529–9534 (1995).

    Article  CAS  Google Scholar 

  22. Rawlett, A. M. et al. Electrical measurements of a dithiolated electronic molecule via conducting atomic force microscopy. Appl. Phys. Lett. 81, 3043–3045 (2002).

    Article  CAS  Google Scholar 

  23. Blum, A. S. et al. Charge transport and scaling in molecular wires. J. Phys. Chem. B 108, 18124–18128 (2004).

    Article  CAS  Google Scholar 

  24. Long, D. P., Lazorcik, J. L. & Shashidhar, R. Magnetically directed self-assembly of carbon nanotube devices. Adv. Mater. 16, 814–819 (2004).

    Article  CAS  Google Scholar 

  25. Donhauser, Z. J., II, D. W. P., Tour, J. M. & Weiss, P. S. Control of alkanethiolate monolayer structure using vapor-phase annealing. J. Am. Chem. Soc. 125, 11462–11463 (2003).

    Article  CAS  Google Scholar 

  26. Blum, A. S. et al. Cowpea mosaic virus as a scaffold for 3-D patterning of gold nanoparticles. Nano Lett. 4, 867–870 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research support by the Defense Advanced Research Projects Agency and the Office of Naval Research is gratefully acknowledged. We thank S. K. Pollack and J. Lazorcik for helpful discussions. J.C.Y. and D.P.L. thank the National Research Council for fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Szuchmacher Blum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, A., Kushmerick, J., Long, D. et al. Molecularly inherent voltage-controlled conductance switching. Nature Mater 4, 167–172 (2005). https://doi.org/10.1038/nmat1309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing