Abstract
The ability to manipulate single atoms and molecules laterally for creating artificial structures on surfaces1 is driving us closer to the ultimate limit of two-dimensional nanoengineering2,3. However, experiments involving this level of manipulation have been performed only at cryogenic temperatures. Scanning tunnelling microscopy has proved, so far, to be a unique tool with all the necessary capabilities for laterally pushing, pulling or sliding4 single atoms and molecules, and arranging them on a surface at will. Here we demonstrate, for the first time, that it is possible to perform well-controlled lateral manipulations of single atoms using near-contact atomic force microscopy5,6,7 even at room temperature. We report the creation of 'atom inlays', that is, artificial atomic patterns formed from a few embedded atoms in the plane of a surface. At room temperature, such atomic structures remain stable on the surface for relatively long periods of time.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).
Heinrich, A. J., Lutz, C. P., Guptab, J. A. & Eigler, D. M. Molecule cascades. Science 298, 1381–1387 (2002).
Nazin, G. V., Qiu, X. H. & Ho, W. Visualization and spectroscopy of a metal-molecule-metal bridge. Science 302, 77–81 (2003).
Bartels, L., Meyer, G. & Rieder, K.-H. Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. Phys. Rev. Lett. 79, 697–700 (1997).
Morita, S., Wiesendanger, R. & Meyer, E. (eds) Noncontact Atomic Force Microscopy (Springer, Berlin, 2002).
García, R. & Pérez, R. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002).
Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).
Giessibl, F. J. Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy. Science 267, 68–71 (1995).
Kitamura, S. & Iwatsuki, M. Observation of 7x7 reconstructed structure on the silicon (111) surface using ultrahigh vacuum noncontact atomic force microscopy. Jpn J. Appl. Phys. 34, L145–L148 (1995).
Sugawara, Y., Ohta, M., Ueyama, H. & Morita, S. Defect motion on an InP(110) surface observed with noncontact atomic force microscopy. Science 270, 1646–1648 (1995).
Loppacher, Ch. et al. Dynamic force microscopy of copper surfaces: Atomic resolution and distance dependence of tip-sample interaction and tunneling current. Phys. Rev. B 62, 16944–16949 (2000).
Barth, C. & Reichling, M. Imaging the atomic arrangements on the high-temperature reconstructed α-Al2O3(0001) surface. Nature 414, 54–57 (2001).
Lantz, M. A. et al. Quantitative measurement of short-range chemical bonding forces. Science 291, 2580 (2001).
Oyabu, N., Custance, O., Yi, I., Sugawara, Y. & Morita, S. Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy. Phys. Rev. Lett. 90, 176102 (2003).
Pérez, R., Payne, M. C., Štich, I. & Terakura, K. Role of covalent tip-surface interactions in noncontact atomic force microscopy on reactive surfaces. Phys. Rev. Lett. 78, 678–681 (1997).
Albrecht, T. R., Grütter, P., Horne, D. & Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991).
Becker, R. S., Swartzentruber, B. S., Vickers, J. S. & Klitsner, T. Dimer-adatom-stacking-fault (DAS) and non-DAS (111) semiconductor surfaces: A comparison of Ge(111)-c(2x8) to Si(111)-(2x2), -(5x5), -(7x7), and -(9x9) with scanning tunneling microscopy. Phys. Rev. B 39, 1633–1647 (1989).
Takeuchi, N., Selloni, A. & Tosatti, E. Do we know the true structure of the Ge(111)-c(2x8)? Phys. Rev. Lett. 69, 648–651 (1992).
Feenstra, R. M., Slavin, A. J., Held, G. A. & Luzt, M. A. Surface diffusion and phase transition on the Ge(111) surface studied by scanning tunneling microscopy. Phys. Rev. Lett. 66, 3257–3260 (1991).
Kitamura, S., Sato, T. & Iwatsuki, M. Observation of surface reconstruction on silicon above 800 °C using the STM. Nature 351, 215–217 (1991).
Ganz, E., Theiss, S. K., Hwang, I.-S. & Golovchenko, J. Direct measurement of diffusion by hot tunneling microscopy: activation energy, anisotropy, and long jumps. Phys. Rev. Lett. 68, 1567–1570 (1992).
Hwang, I.-S. & Golovchenko, J. Observation of metastable structural excitations and concerted atomic motions on a crystal surface. Science 258, 1119–1122 (1992).
Takeuchi, N., Selloni, A. & Tosatti, E. Adatom diffusion and disordering at the Ge(111)-c(2x8)-(1x1) surface transition. Phys. Rev. B 49, 10757–10760 (1994).
Hwang, I.-S., Theiss, S. K. & Golovchenko, J. A. Mobile point defects and atomic basis for structural transformations of a crystal surface. Science 265, 490–496 (1994).
Brihuega, I., Custance, O. & Gómez Rodríguz, J. M. Surface diffusion of single vacancies on Ge(111)-c(2x8) studied by variable temperature scanning tunneling microscopy. Phys. Rev. B. 70, 165410 (2004).
Pizzagalli, L. & Baratoff. A. Theory of single atom manipulation with a scanning probe tip: Force signatures, constant-height, and constant-force scans. Phys. Rev. B, 68, 115427 (2003).
Acknowledgements
We thank Rubén Peréz for the careful revision of the manuscript. This material is based on work supported by the Handai Frontier Research Center, by the Active Nano-Characterization and Technology Project, and by a Grant in Aid for Science Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Sugimoto, Y., Abe, M., Hirayama, S. et al. Atom inlays performed at room temperature using atomic force microscopy. Nature Mater 4, 156–159 (2005). https://doi.org/10.1038/nmat1297
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat1297