Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multiscale modelling of defect kinetics in irradiated iron


Changes in microstructure and mechanical properties of nuclear materials are governed by the kinetics of defects produced by irradiation. The population of vacancies, interstitials and their clusters can however be followed only indirectly, for example by macroscopic resistivity measurements. The information on the mobility, recombination, clustering or dissociation of defects provided by such experiments is both extremely rich and difficult to interpret. By combining ab initio and kinetic Monte Carlo methods, we successfully reproduce the abrupt resistivity changes—so-called recovery stages—observed upon annealing at increasing temperatures after electron irradiation in α-iron. New features in the mechanisms responsible for these stages are revealed. We show that di-vacancies and tri-interstitials contribute to the stages attributed to mono-vacancy and di-interstitial migration respectively. We also predict the effect of the unexpected low migration barriers found for tri- and quadri-vacancies, and discuss the challenging questions raised by the mobility of larger defect clusters.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resistivity recovery stages after electron irradiation.
Figure 2: Migration of interstitial-type defects.
Figure 3: Migration of vacancy-type defects.
Figure 4: Resistivity recovery and defect population evolution along isochronal annealing after electron irradiation.
Figure 5: Effect of irradiation dose.
Figure 6: Snapshots of the defect population evolution in the course of isochronal annealing of α-Fe.


  1. Seeger, A., Schumacher, D., Schilling, W. & Diehl, J. (eds) Vacancies and Interstitials in Metals (Elsevier, North-Holland, 1970).

    Google Scholar 

  2. Díaz de la Rubia, T. et al. Multiscale modelling of plastic flow localization in irradiated materials. Nature 406, 871–874 (2000).

    Article  Google Scholar 

  3. Averback, R. S. & Díaz de la Rubia, T. Displacement damage in irradiated metals and semiconductors. Solid State Phys. 51, 281–402 (1998).

    Article  CAS  Google Scholar 

  4. Lanore, J. M. Simulation de l'évolution des défauts dans un réseau par la méthode de Monte Carlo. Radiat. Eff. 22, 153–162 (1974).

    Article  CAS  Google Scholar 

  5. Dalla Torre, J., Bocquet, J.-L., Doan, N. V., Adam, E. & Barbu, A. Jerk, an event-based kinetic Monte Carlo model to predict microstructure evolution of materials under irradiation. Phil. Mag. (in the press).

  6. Soler, J. M. et al. The SIESTA method for ab-initio order-N materials simulation. J. Phys. Condens. Matter. 14, 2745–2779 (2002).

    Article  CAS  Google Scholar 

  7. Fu, C. C., Willaime, F. & Ordejón, P. Stability and mobility of mono- and di-interstitials in α-Fe. Phys. Rev. Lett. 92, 175503 (2004).

    Article  Google Scholar 

  8. Takaki, S., Fuss, J., Kugler, H., Dedek, U. & Schultz, H. The resistivity recovery of high purity and carbon doped iron following low temperature electron irradiation. Radiat. Eff. 79, 87–122 (1983).

    Article  CAS  Google Scholar 

  9. Blythe, H. J., Kronmüller, H., Seeger, A. & Walz, F. A review of the magnetic relaxation and its application in the study of atomic defects in α-iron and its diluted alloys. Phys. Status Solidi A 181, 233–345 (2000).

    Article  CAS  Google Scholar 

  10. Vascon, R. & Doan, N. V. Molecular dynamics simulations of displacement cascades in α-iron. Radiat. Eff. Defects Solids 141, 375–384 (1997).

    Article  CAS  Google Scholar 

  11. Soneda, N. & Díaz de la Rubia, T. Defect production, annealing kinetics and damage evolution in α-Fe: an atomic-scale simulation. Phil. Mag. A 78, 995–1019 (1998).

    Article  CAS  Google Scholar 

  12. Bacon, D. J., Gao, F. & Osetsky, Y. N. The primary damage state in fcc, bcc, and hcp metals as seen in molecular dynamics simulations. J. Nucl. Mater. 276, 1–12 (2000).

    Article  CAS  Google Scholar 

  13. Soneda, N. & Díaz de la Rubia, T. Migration kinetics of the self-interstitial atom and its cluster in bcc Fe. Phil. Mag. A 81, 331–343 (2001).

    Article  CAS  Google Scholar 

  14. Marian, J. et al. Dynamics of self-interstitial cluster migration in pure α-Fe and Fe–Cu alloys. Phys. Rev. B 65, 144102 (2002).

    Article  Google Scholar 

  15. Marian, J., Wirth, B. D. & Perlado, J. M. Mechanism of formation and growth of <100> interstitial loops in ferritic materials. Phys. Rev. Lett. 88, 255507 (2002).

    Article  Google Scholar 

  16. Mendelev, M. I. et al. Development of new interatomic potentials appropriate for crystalline and liquid iron. Phil. Mag. 83, 3977–3994 (2003).

    Article  CAS  Google Scholar 

  17. Telling, R. H., Ewels, C. P., El-Barbary, A. A. & Heggie, M. I. Wigner defects bridge the graphite gap. Nature Mater. 2, 333–337 (2003).

    Article  CAS  Google Scholar 

  18. Domain, C. & Becquart, C. S. Ab initio calculations of defects in Fe and dilute Fe–Cu alloys. Phys. Rev. B 65, 024103 (2001).

    Article  Google Scholar 

  19. Johnson, R. A. Interstitials and vacancies in α iron. Phys. Rev. 134, A1329–A1336 (1964).

    Article  Google Scholar 

  20. Beeler, J. R. & Johnson, R. A. Vacancy clusters in α-iron. Phys. Rev. 156, 677–684 (1967).

    Article  CAS  Google Scholar 

  21. Becquart, C. S. & Domain, C. Ab initio contribution to the study of complexes formed during dilute FeCu alloys radiation. Nucl. Instrum. Meth. B 202, 44–50 (2003).

    Article  CAS  Google Scholar 

  22. Hardouin Duparc, A., Moingeon, C., Smetniansky-de-Grande, N. & Barbu, A. Microstructure modelling of ferritic alloys under high flux 1 MeV electron irradiations. J. Nucl. Mater. 302, 143–155 (2002).

    Article  CAS  Google Scholar 

  23. Schwendemann, B., Kronmüller, H. & Walz, F. Investigation of stage III in electron-irradiated α-iron. Cryst. Latt. Def. Amorph. Mater. 11, 1–14 (1985).

    CAS  Google Scholar 

  24. Verdone, J., Moser, P., Hautojärvi, P., Johanson, J. & Vehanen, A. in Internal Friction and Ultrasonic Attenuation in Solids (ed. Smith, C.), 205–210 (Pergamon, Oxford, 1980).

    Book  Google Scholar 

  25. Matsui, H., Takehana, S. & Guinan, M. W. Resistivity recovery in high purity iron after fission- and fusion-neutron irradiation. J. Nucl. Mater. 155–157, 1284–1289 (1988).

    Article  Google Scholar 

  26. Ward, A. E. & Fischer, S. B. Dislocation loop growth in pure iron under electron irradiation. J. Nucl. Mater. 166, 227–234 (1989).

    Article  CAS  Google Scholar 

  27. Robinson, T. M. Xenon ion irradiation of α-Fe. Phys. Status Solidi A 75, 243–249 (1983).

    Article  CAS  Google Scholar 

  28. Caturla, M. J. et al. Comparative study of radiation damage accumulation in Cu and Fe. J. Nucl. Mater. 276, 13–21 (2000).

    Article  CAS  Google Scholar 

  29. Marian, J. et al. Direct comparison between modeling and experiment: an α-Fe ion implantation study. Mater. Res. Soc. Symp. Proc. 650, R3.2.1–6 (2001).

    Google Scholar 

  30. Pelfort, M., Osetsky, Y. N. & Serra, A. Vacancy interaction with glissile interstitial clusters in bcc metals. Phil. Mag. Lett. 81, 803–811 (2001).

    Article  CAS  Google Scholar 

  31. Eyre, B. L. & Bullough, R. On the formation of interstitial loops in bcc metals. Phil. Mag. 12, 31–35 (1965).

    Article  CAS  Google Scholar 

  32. Brailsford, A. D., Bullough, R. & Hayns, M. Point defect sink strengths and void-swelling. J. Nucl. Mater. 60, 246–256 (1976).

    Article  Google Scholar 

  33. Ordejón, P. Linear scaling ab-initio calculations in nanoscale materials with SIESTA. Phys. Status Solidi B 217, 335–356 (2000).

    Article  Google Scholar 

  34. Maurice, F. & Doan, N. V. Simulation de l'évolution de populations de défauts dans un cristal par la méthode de Monte Carlo. Tech. Rep. CEA-R-5101 (1981).

  35. Maury, F., Biget, M., Vajda, P. & Lucasson, A. Anisotropy of defect creation in electron irradiated iron crystals. Phys. Rev. B 14, 5303–5313 (1976).

    Article  CAS  Google Scholar 

  36. Barbu, A., Becquart, C. S., Bocquet, J.-L., Dalla Torre, J. & Domain, C. Comparison between three complementary approaches to simulate large fluence irradiation: application to electron irradiation of thin foils. Phil. Mag. (in the press).

Download references


We thank G. Martin for discussions, G. Landa and P. Bellon for a critical reading of the manuscript and N. V. Doan and E. Adam for help in visualization codes. This work was supported by the PERFECT European Integrated Project under Contract No. FI6O-CT-2003-508840 and by the joint research program SMIRN between EDF, CEA and CNRS.

Author information

Authors and Affiliations


Corresponding author

Correspondence to François Willaime.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fu, CC., Torre, J., Willaime, F. et al. Multiscale modelling of defect kinetics in irradiated iron. Nature Mater 4, 68–74 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing