Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic control of the photonic smectic order of membranes

Abstract

Self-assembled soft matter is often used in photonics because its characteristic length scale can be of the order of the wavelength of light. For example, a hyperswollen lamellar phase composed of bilayer membranes reflects visible light by the Bragg diffraction and acts as a photonic smectic crystal. The softness of such a structure allows us to dynamically control its photonic characteristics using an external field, as reported here. The smectic order of membranes is destabilized by doping charged colloidal particles into intermembrane water regions. However, we found that anisotropic coherent motion of particles along membranes induced by an alternating electric field enhances the degree of the photonic smectic order significantly. This demonstrates that entropic interactions can be controlled by modulating the membrane fluctuations through their dynamic coupling to an external field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of particle doping on the photonic smectic order.
Figure 2: Effects of the frequency of the electric field on the latex-doped hyperswollen lamellar phase.
Figure 3: Dynamic photonic response of the particle-doped smectic phase to an oscillatory electric field.
Figure 4: Dynamic control of a particle-doped lamellar phase.
Figure 5: Enhancement of the Bragg reflection efficiency as a function of the frequency for various particle concentrations, (φ%).
Figure 6: Our time-resolved light-scattering system.

Similar content being viewed by others

References

  1. Daoud, M. & Williams, C. E. (eds) Soft Matter Physics (Springer, Berin, 1999).

    Book  Google Scholar 

  2. Helfrich W. Steric interaction of fluid membranes in multiplayer systems. Naturforsch. 33a, 305–315 (1978).

    CAS  Google Scholar 

  3. Strey, R., Schomacker, R., Roux, D., Nallet, F, & Olsson, U. Dilute lamellar and L3 phases in the binary water-C12E5 system. J. Chem. Soc. Faraday Trans. 86, 2253–2261 (1990).

    Article  CAS  Google Scholar 

  4. Diat, O., Roux, D. & Nallet, F. Effect of shear on a lyotropic lamellar phase. J. Phys. II 3, 1427–1452 (1993).

    CAS  Google Scholar 

  5. Tarhan, I. I. & Watson, G. H. Photonic band structure of fcc colloidal crystals. Phys. Rev. Lett. 76, 315–318 (1996).

    Article  CAS  Google Scholar 

  6. van Blaaderen, A., Ruel, R. & Wiltzius, P. Template-directed colloidal crystallization. Nature 385, 321–324 (1997).

    Article  CAS  Google Scholar 

  7. Wickman, H. H. & Korley, J. N. Colloid crystal self-organization and dynamics at the air/water interface. Nature 393, 445–447 (1998).

    Article  CAS  Google Scholar 

  8. Mach, P. et al. Switchable Bragg diffraction from liquid crystal in colloid-templated structures. Europhys. Lett. 58, 679–685 (2002).

    Article  CAS  Google Scholar 

  9. Cates, M. E. & Milner, S. T. Role of shear in the isotropic-to-lamellar transition. Phys. Rev. Lett. 62, 1856–1859 (1989).

    Article  CAS  Google Scholar 

  10. Ramaswamy, S. Shear-induced collapse of the dilute lamellar phase. Phys. Rev. Lett. 69, 112–115 (1992).

    Article  CAS  Google Scholar 

  11. Bruinsma, R. & Rabin, Y. Shear-flow enhancement and suppression of fluctuations in smectic liquid-crystals. Phys. Rev. A 45, 994–1008 (1992).

    Article  CAS  Google Scholar 

  12. Marlow, S. W. & Olmsted, P. D. The effect of shear flow on the Helfrich interaction in lyotropic lamellar systems. Eur. Phys. J. E 8, 485–497 (2002).

    Article  CAS  Google Scholar 

  13. Auernhammer, G. K., Brand, H. R. & Pleiner, H. Shear-induced instabilities in layered liquids. Phys. Rev. E 66, 061707 (2002).

    Article  Google Scholar 

  14. Yamamoto, J. & Tanaka, H. Shear effects on layer undulation fluctuations of a hyperswollen lamellar phase. Phys. Rev. Lett. 74, 932–935 (1995).

    Article  CAS  Google Scholar 

  15. Yamamoto, J. & Tanaka, H. Shear-induced sponge-lamellar transition in a hyperswollen lyotropic system. Phys. Rev. Lett. 77, 4390–4393 (1996).

    Article  CAS  Google Scholar 

  16. Fabre, P. et al. Anisotropy of the diffusion-coeffcients of submicronic particles embedded in a lamellar phases. Europhys. Lett. 20, 229–234 (1992).

    Article  CAS  Google Scholar 

  17. Ligoure, C, Bouglet, G. & Porte, G. Polymer induced phase separation in lyotropic smectics. Phys. Rev. Lett. 71, 3600–3603 (1993).

    Article  CAS  Google Scholar 

  18. Nallet, F., Roux, D., Quilliet, C., Fabre, P. & Milner, S. T. Elasticity and hydrodynamic properties of doped solvent dilute lamellar phases. J. Phys. II 4, 1477–1499 (1994).

    CAS  Google Scholar 

  19. Salamat, G. & Kaler, E. W. Colloidal dispersions in lyotropic lamellar phases. Langmuir 15, 5414–5421 (1999).

    Article  CAS  Google Scholar 

  20. Tanaka, H., Isobe, M. & Yamamoto, J. Spontaneous partitioning of particles into cellar structure in a membrane system. Phys. Rev. Lett. 89, 168303 (2002).

    Article  Google Scholar 

  21. Sens, P., Turner, P. & Pincus, P. Particulate inclusions in a lamellar phase. Phys. Rev. E 55, 4394–4405 (1997).

    Article  CAS  Google Scholar 

  22. Mizuno, D., Kimura, Y. & Hayakawa, R. Electrophoretic microrheology of a dilute lamellar phase: Relaxation mechanisms in frequency-dependent mobility of nanometer-sized particles between soft membranes. Phys. Rev. E 79, 011509 (2004).

    Article  Google Scholar 

  23. Nallet, F., Roux, D. & Prost, J. Hydrodynamics of lyotropic smectics—A dynamic light-scattering study of dilute lamellar phases. J. Phys. 50, 3147–3165 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to C. P. Royall for critical reading of our manuscript and valuable comments. This work is partly supported by a grand-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Tanaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, J., Tanaka, H. Dynamic control of the photonic smectic order of membranes. Nature Mater 4, 75–80 (2005). https://doi.org/10.1038/nmat1281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1281

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing