Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer

Abstract

Morphosynthesis strategies inspired by biomineralization processes gives access to a wide range of fascinating and useful crystalline mesostructures1,2,3. Biomimetic synthesis of inorganic materials with complex shapes can now be used to control the nucleation, tensorial growth, and alignment of inorganic crystals in a way previously not practicable3. Double hydrophilic block copolymers (DHBCs)4 consisting of a hydrophilic block strongly interacting with inorganic minerals, and a non-interacting hydrophilic block, were recently introduced for the control of mineralization reactions. DHBCs are 'improved versions' of the previously used polyelectrolytes or amphiphiles and are extraordinarily effective in crystallization control5,6,7,8,9. Here, we report on the formation of helices of achiral BaCO3 nanocrystals in the presence of a racemic DHBC suggesting that a helical alignment can be induced by racemic polymers through selective adsorption on the (110) face of nanocrystals. This mechanism is the key for a better understanding of the self-assembly of chiral organic–inorganic superstructures that don't follow a direct template route.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structure of PEG-b-DHPOBAEE.
Figure 2: Helical nanoparticle superstructures.
Figure 3: Change of helical pitch.
Figure 4: Proposed mechanism leading to spontaneous helix formation.

Similar content being viewed by others

References

  1. Mann, S. The chemistry of form. Angew. Chem. Int. Edn 39, 3392–3406 (2000).

    Article  CAS  Google Scholar 

  2. Cölfen, H. & Mann, S. Emergence of higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Edn 42, 2350–2365 (2003).

    Article  Google Scholar 

  3. Estroff, L. A. & Hamilton, A. D. At the interface of organic and inorganic chemistry: Bioinspired synthesis of composite materials Chem. Mater. 13, 3227–3235 (2001).

    Article  CAS  Google Scholar 

  4. Cölfen, H. Double-hydrophilic block copolymers: Synthesis and application as novel surfactants and crystal growth modifiers. Macromol. Rapid Commun. 22, 219–252 (2001).

    Article  Google Scholar 

  5. Antonietti, M. et al. Inorganic/organic mesostructures with complex architectures: Precipitation of calcium phosphate in the presence of double-hydrophilic block copolymers. Chem. Eur. J. 4, 2493–2500 (1998).

    Article  CAS  Google Scholar 

  6. Marentette, J. M., Norwig, J., Stockelmann, E., Meyer, W. H. & Wegner, G. Crystallization of CaCO3 in the presence of PEO-block-PMAA copolymers. Adv. Mater. 9, 647–651 (1997).

    Article  CAS  Google Scholar 

  7. Yu, S. H., Cö lfen, H. & Antonietti, M. Control of the morphogenesis of barium chromate by using double-hydrophilic block copolymers (DHBCs) as crystal growth modifiers. Chem. Eur. J. 8, 2937–2945 (2002).

    Article  CAS  Google Scholar 

  8. Qi, L. M., Cölfen. H. & Antonietti, M. Crystal design of barium sulfate using double-hydrophilic block copolymers. Angew. Chem. Int. Edn 39, 604–607 (2000).

    Article  CAS  Google Scholar 

  9. Robinson, K. L., Weaver, J. V. M., Armes, S. P., Marti, E. D. & Meldrum, F. C. Synthesis of controlled-structure sulfate-based copolymers via atom transfer radical polymerisation and their use as crystal habit modifiers for BaSO4 . J. Mater. Chem. 12, 890–896 (2002).

    Article  CAS  Google Scholar 

  10. Xia, Y. et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).

    Article  CAS  Google Scholar 

  11. Sone, E. D., Zubarev E. R. & Stupp, S. I. Semiconductor nanohelices templated by supramolecular ribbons. Angew. Chem. Int. Edn 41, 1706–1709 (2002).

    Article  Google Scholar 

  12. Zhang, H. F., Wang, C. M. & Wang, L. S. Helical crystalline SiC/SiO2 core-shell nanowires. Nano Lett. 2, 941–944 (2002).

    Article  CAS  Google Scholar 

  13. Sato, I. et al. Highly enantioselective synthesis of organic compound using right- and left-handed helical silica. Tetrahedr. Lett. 44, 721–724 (2002).

    Article  Google Scholar 

  14. van Bommel, K. J. C., Friggeri. A. & Shinkai, S. Organic templates for the generation of inorganic materials. Angew. Chem. Int. Edn 42, 980–999 (2003).

    Article  CAS  Google Scholar 

  15. Sugawara, T., Suwa, Y., Ohkawa, K. & Yamamoto, H. Chiral biomineralization: Mirror-imaged helical growth of calcite with chiral phosphoserine copolypeptides. Macromol. Rapid Commun. 24, 847–851 (2003).

    Article  CAS  Google Scholar 

  16. Gower L. A. & Tirrell, D. A. Calcium carbonate films and helices grown in solutions of poly(aspartate). J. Crystal Growth 191, 153–160 (1998).

    Article  CAS  Google Scholar 

  17. García-Ruiz, J. M. et al. Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302, 1194–1197 (2003).

    Article  Google Scholar 

  18. Garcia-Ruiz J. M. & Amoros J. L. Crystal aggregates with induced morphologies grown by silica gel technique. Bull. Mineral. 104, 107–113 (1981).

    CAS  Google Scholar 

  19. Imai, H. & Oaki, Y. Emergence of morphology chirality from twinned crystals. Angew. Chem. Int. Edn 43, 1363–1368 (2004).

    Article  CAS  Google Scholar 

  20. Terada, T., Yamabi, S. & Imai, H. Formation process of sheets and helical forms consisting of strontium carbonate fibrous crystals with silicate. J. Crystal Growth 253, 435–444 (2003).

    Article  CAS  Google Scholar 

  21. Tauer, K., Antonietti, M., Rosengarten, L. & Müller, H. Initiators based on poly(ethylene glycol) for starting heterophase polymerizations: generation of block copolymers and new particle morphologies. Macromol. Chem. Phys. 199, 897–908 (1998).

    Article  CAS  Google Scholar 

  22. Odian, G. Principles of Polymerization, Third Edition 625–626 (Wiley, New York, 1991).

    Google Scholar 

  23. Sommerdijk, N. A. J. M., Holder, S. J., Hiorns, R. C., Jones, R. G. & Nolte, R. J. M. Self-assembled structures from an amphiphilic multiblock copolymer containing rigid semiconductor segments. Macromolecules 33, 8289–8294 (2000).

    Article  CAS  Google Scholar 

  24. Cornelissen, J. J. L. M., Rowan A. E., Nolte R. J. M. & Sommerdijk, N. A. J. M. Chiral architectures from macromolecular building blocks. Chem. Rev. 101, 4039–4070 (2001).

    Article  CAS  Google Scholar 

  25. Weiner, S., Albeck, S. & Addadi, L. Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro. Chem. Eur. J. 2, 278–284 (1996).

    Article  Google Scholar 

  26. Tang, Z. Y., Kotov. N. A. & Giersig. M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237–240 (2002).

    Article  CAS  Google Scholar 

  27. Qi, L. M. et al. Formation of BaSO4 fibres with morphological complexity in aqueous polymer solutions. Chem. Eur. J. 7, 3526–3532 (2001).

    Article  CAS  Google Scholar 

  28. Yu, S. H., Antonietti, M., Cölfen, H. & Hartmann, J. Growth and self-assembly of BaCrO4 and BaSO4 nanofibers toward hierarchical and repetitive superstructures by polymer-controlled mineralization reactions. Nano Lett. 3, 379–382 (2003).

    Article  CAS  Google Scholar 

  29. Travaille, A. M. et al. Aligned growth of calcite crystals on a self-assembled monolayer. Adv. Mater. 14, 492–495 (2002).

    Article  CAS  Google Scholar 

  30. Penn, R. L. & Banfield, J. F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim. Cosmochim. Acta 63, 1549–1557 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Max Planck Gesellschaft and the Deutsche Forschungsgemeinschaft for financial support. S. H. Yu thanks the special funding support from the Chinese Academy of Sciences the Distinguished Youth and Team Funds from the National Science Foundation of China (No. 20325104, No. 20321101), and NSFC No. 50372065, AvH Foundation, and Max Planck Society). The authors thank the Ivoclar AG (Schaan, Liechtenstein) for the gift of the (2-[4-dihydroxy phosphoryl]-2-oxabutyl) monomer. A. Völkel is acknowledged for the ultracentrifuge experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Hong Yu, Helmut Cölfen or Markus Antonietti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Fig S1, Fig S2, Fig S3, Fig S4, Fig S5, Fig S6 (PDF 505 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, SH., Cölfen, H., Tauer, K. et al. Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer. Nature Mater 4, 51–55 (2005). https://doi.org/10.1038/nmat1268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing