Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembly of polymeric microspheres of complex internal structures

Abstract

Self-assembly can easily produce intricate structures that would be difficult to make by conventional fabrication means. Here, self-assembly is used to prepare multicomponent polymeric microspheres of arbitrary internal symmetries. Droplets of liquid prepolymers are printed onto a water-soluble hydrogel, and are allowed to spread and coalesce into composite patches. These patches are then immersed in an isodense liquid, which both compensates the force of gravity and dissolves the gel beneath the polymers. Subsequently, the patches fold into spheres whose internal structures are dictated by the arrangement of the droplets printed onto the surface. The spheres can be solidified either thermally or by ultraviolet radiation. We present a theoretical analysis of droplet spreading, coalescence and folding. Conditions for the stability of the folded microspheres are derived from linear stability analysis. The composite microbeads that we describe are likely to find uses in optics, colloidal self-assembly and controlled-delivery applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spreading and folding of two-component spheres.
Figure 2: Schematic illustration of droplet spreading, folding and break-up.
Figure 3: Microspheres with national-flag topologies.
Figure 4: Multicomponent core-and-shell and non-spherical particles.

Similar content being viewed by others

References

  1. Yu, Z. R. & Bradley, M. Solid supports for combinatorial chemistry. Curr. Opin. Chem. Biol. 6, 347–352 (2002).

    Article  CAS  Google Scholar 

  2. Jeong, B., Bae, Y. H., Lee, D. S. & Kim, S. W. Biodegradable block copolymers as injectable drug-delivery systems. Nature 388, 860–862 (1997).

    Article  CAS  Google Scholar 

  3. Park, S. H., Gates, B. & Xia, Y. Adv. Mater. 11, 462–466 (1999).

    Article  CAS  Google Scholar 

  4. Terray, A., Oakey, J. & Marr, D. W. M. Microfluidic control using colloidal devices. Science 296, 1841–1844 (2002).

    Article  CAS  Google Scholar 

  5. Bangs, L. B. New developments in particle-based immunoassays: Introduction. Pure Appl. Chem. 68, 1873–1879 (1996).

    Article  CAS  Google Scholar 

  6. Russel, W. B., Saville, D. A. & Schwalter, W. R. Colloidal Dispersions (Cambridge Univ. Press, Cambridge, 1989).

    Book  Google Scholar 

  7. Hunter, R. J. Introduction to Modern Colloidal Science (Oxford Univ. Press, Oxford, 1993)

    Google Scholar 

  8. Peng, Q., Dong, Y. J. & Li, Y. D. ZnSe semiconductor hollow microspheres. Angew. Chem. Int. Edn 42, 3027–3030 (2003).

    Article  CAS  Google Scholar 

  9. Fowler, C. E., Khushalani, D. & Mann, S. Interfacial synthesis of hollow microspheres of mesostructured silica. Chem. Commun. 19, 2028–2029 (2001).

    Article  Google Scholar 

  10. Yin, J. L. et al. Preparation of polystyrene/zirconia core-shell microspheres and zirconia hollow shells. Inorg. Chem. Commun. 6, 942–945 (2003).

    Article  CAS  Google Scholar 

  11. Xiao, X. C., Chu, L. Y., Chen, W. M., Wang, S. & Li, Y. Positively thermo-sensitive monodisperse core-shell microspheres. Adv. Funct. Mater. 13, 847–852 (2003).

    Article  CAS  Google Scholar 

  12. Lu, Y., Yin, Y., Li, Z.-Y. & Xia, Y. Colloidal crystals made of polystyrene spheroids: fabrication and structural/optical characterization Langmuir 18, 7722–7727 (2002).

    Article  CAS  Google Scholar 

  13. Lean, R. C. Physics and performance optimization of electronic paper. J. Imaging Sci. Tech. 46, 562–574 (2002).

    CAS  Google Scholar 

  14. Hays, D. A. Paper documents via the electrostatic control of particles. J. Electrostatics 51, 57–63 (2001).

    Article  Google Scholar 

  15. Wang, J., Liu, G. & Rivas, G. Encoded beads for electrochemical identification. Anal. Chem. 75, 4667–4671 (2003).

    Article  CAS  Google Scholar 

  16. Fujimoto, K., Nakahama, K., Shidara, M. & Kawaguchi, H. Preparation of unsymmetrical microspheres at the interfaces. Langmuir 15, 4630–4635 (1999).

    Article  CAS  Google Scholar 

  17. Hugonnot, E., Carles, A., Delville, M. H., Panizza, P. & Delville, J. P. 'Smart' surface dissymmetrization of microparticles driven by laser photochemical deposition. Langmuir 19, 226–229 (2003).

    Article  CAS  Google Scholar 

  18. Takei, H. & Shimizu, N. Gradient sensitive microscopic probes prepared by gold evaporation and chemisorption on latex spheres. Langmuir 13, 1865–1868 (1997).

    Article  CAS  Google Scholar 

  19. Nakahama, K., Kawaguchi, H. & Fujimoto, K. A novel preparation of nonsymmetrical microspheres using the Langmuir–Blodgett technique. Langmuir 16, 7882–7886 (2000).

    Article  CAS  Google Scholar 

  20. Whitesides, G. M. & Grzybowski, B. A. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  21. Kim, E. & Whitesides, G. M. Use of minimal free energy and self-assembly to form shapes. Chem. Mater. 7, 1257–1264 (1995).

    Article  CAS  Google Scholar 

  22. Aubouy, M., Manghi, M. & Raphaël, E. Interfacial properties of polymeric liquids. Phys. Rev. Lett. 84, 4858–4861 (2000).

    Article  CAS  Google Scholar 

  23. Dee G. T. & Sauer B. B. The surface tension of polymer blends: theory and experiment. Macromolecules 26, 2771–2778 (1992).

    Article  Google Scholar 

  24. Karim, A. et al. Phase-separation-induced surface patterns in thin polymer blend films. Macromolecules 31, 857–862 (1998).

    Article  CAS  Google Scholar 

  25. de Ruijter, M. J. & Beysens, D. Droplet spreading: partial wetting regime revisited. Langmuir 15, 2209–2216 (1998).

    Article  Google Scholar 

  26. Rayleigh, J. W. S. On the instability of jets. Proc. London Math. Soc. X, 4–13 (1879).

    Google Scholar 

  27. Barbosa, J. & Manfredo, C. Stability of hypersurfaces with constant mean curvature. Math. Z. 185, 339–353 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

B.G. gratefully acknowledges financial support from Northwestern University start-up funds and from the Camille and Henry Dreyfus New Faculty Awards Program. M.F. was supported by the NATO Scientific Fellowship. A.B. acknowledges financial assistance from the ProChimia Poland Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz A. Grzybowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fialkowski, M., Bitner, A. & Grzybowski, B. Self-assembly of polymeric microspheres of complex internal structures. Nature Mater 4, 93–97 (2005). https://doi.org/10.1038/nmat1267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1267

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing