Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Measuring strain distributions in amorphous materials

Abstract

A number of properties of amorphous materials including fatigue, fracture and component performance are governed by the magnitude of strain fields around inhomogeneities such as inclusions, voids and cracks. At present, localized strain information is only available from surface probes such as optical or electron microscopy1,2. This is unfortunate because surface and bulk characteristics in general differ. Hence, to a large extent, the assessment of strain distributions relies on untested models. Here we present a universal diffraction method for characterizing bulk stress and strain fields in amorphous materials and demonstrate its efficacy by work on a material of current interest in materials engineering: a bulk metallic glass3,4,5. The macroscopic response is shown to be less stiff than the atomic next-neighbour bonds because of structural rearrangements at the scale of 4–10 Å. The method is also applicable to composites comprising an amorphous matrix and crystalline inclusions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Data analysis procedure.
Figure 2: Evolution of strain components during uniaxial compression of a homogenous specimen.
Figure 3: The axial strain field around a circular hole in a 2-mm-thick plate of BMG at a compressive stress of 390 MPa acting in the horizontal direction.
Figure 4: Evolution of axial lattice strain (ε11) during compression of a partly crystalline BMG specimen.

Similar content being viewed by others

References

  1. Synnergren, P. & Sjödahl, M. Optical in-plane strain field sensor. Appl. Opt. 41, 1323–1329 (2002).

    Article  Google Scholar 

  2. Tatshl, A. & Kolednik, O. On the experimental characterization of crystal plasticity in polycrystals. Mater. Sci. Eng. A342, 152–168 (2003).

    Article  Google Scholar 

  3. Johnson, W. L. Bulk glass-forming metallic alloys: science and technology. Mater. Res. Soc. Bull. 24, 42–56 (1999).

    Article  CAS  Google Scholar 

  4. Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279–306 (2000).

    Article  CAS  Google Scholar 

  5. Eckert, J., Deledda, S., Kuhn, U. & Reger-Leonhard, A. Bulk metallic glasses and composites in multicomponent systems. Mater. Trans. 42, 650–655 (2001).

    Article  CAS  Google Scholar 

  6. Noyan, I. C. & Cohen J. B. Residual Stress (Springer, Berlin, 1987).

    Book  Google Scholar 

  7. Fitzpatrick, M. & Lodini, A. (eds) Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation (Taylor and Francis, London, 2003).

    Google Scholar 

  8. Kirkpatrick, P., Baez, A. V. & Newell A. Geometrical optics of grazing incidence reflectors. Phys Rev. 73, 535–536 (1948).

    Google Scholar 

  9. Snigirev, A., Kohn, V., Snigireva, I. & Lengeler B. A compound refractive lens for focusing high-energy X-rays. Nature 384, 49–51 (1996).

    Article  CAS  Google Scholar 

  10. Pfeiffer, F., David, C., Burghammer, M., Riekel, C. & Salditt T. Two-dimensional X-ray waveguides and point sources. Science 297, 230–234 (2002).

    Article  CAS  Google Scholar 

  11. Reimers, W. et al. The use of high-energy synchrotron diffraction for residual stress analyses. J. Mater. Sci. Lett. 18, 581–583 (1999).

    Article  CAS  Google Scholar 

  12. Haase, J. D., Guvenilir, A., Witt, J. R. & Stock, S. R. X-ray microbeam mapping of microtexture related to fatigue crack asperities in Al–Li 2090. Acta Mater. 46, 4791–4799 (1998).

    Article  CAS  Google Scholar 

  13. Wang P. C., Cargill G. S., Noyan I. C. & Hu C. K. Electromigration-induced stress in aluminum conductor lines measured by x-ray microdiffraction. Appl. Phys. Lett. 72, 1296–1298 (1998).

    Article  CAS  Google Scholar 

  14. Sinclair, R. et al. The effect of fibre fractures in the bridging zone of fatigue cracked Ti-6Al-4V/SiC fibre composites. Acta Mater. 52, 1423–1438 (2004).

    Article  CAS  Google Scholar 

  15. Poulsen, H. F. et al. Three-dimensional maps of grain boundaries and the stress state of individal grains in polycrystals and powders. J. Appl. Cryst. 34, 751–756 (2001).

    Article  CAS  Google Scholar 

  16. Larson, B. C. et al. Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415, 887–890 (2002).

    Article  CAS  Google Scholar 

  17. Tulk, C. A. et al. Structural studies of several distinct metastable forms of amorphous ice. Science 297, 1320–23 (2002).

    Article  CAS  Google Scholar 

  18. Sampath, S. et al. Intermediate-range order in permanently densified GeO2 glass. Phys. Rev. Lett. 90, 115502–1-4 (2003).

    Article  CAS  Google Scholar 

  19. Yavari, A. R. et al. Quenched-in free volume Vf, deformation-induced free volume, the glass transition Tg and thermal expansion in glassy ZrNbCuNiAl measured by time-resolved diffraction in transmission. Mater. Res. Symp. Proc. 806, 203–208 (2004).

    CAS  Google Scholar 

  20. Ott, R. T. et al. Synchrotron strain measurements for in situ formed metallic glass matrix composites. Mater. Res. Soc. Proc. 806 MM8.12 (2004).

  21. Balch, D. K., Ustundag, E. & Dunand, D. C. Elasto-plastic load transfer in bulk metallic glass composites containing ductile particles. Metall. Mater. Trans. A 34, 1787–1797 (2003).

    Article  Google Scholar 

  22. Schneider, J. R. et al. High energy synchrotron radiation. A new probe for condensed matter research. J. Phys. IV 4, 415–421 (1994).

    Google Scholar 

  23. Warren, B. E. X-ray Diffraction (Addison-Wesley, Reading, 1968).

    Google Scholar 

  24. Poulsen, H. F., Neuefeind, J., Neumann, H.-B., Schneider, J. R. & Zeidler, M. D. Amorphous silica studied by high energy X-ray diffraction. J. Non-Cryst. Solids 188, 63–74 (1995).

    Article  CAS  Google Scholar 

  25. Yuan, G., Zhang, T. & Inoue, A. Thermal stability, glass forming ability and mechanical properties of Mg–Y–Zn–Cu glassy alloys. Mater. Trans. JIM 44, 2271–2275 (2003).

    Article  CAS  Google Scholar 

  26. Kirsch, G. Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Z. Verein Deutsch. Ing. 42, 797–807 (1898).

    Google Scholar 

  27. Wolff, U., Pryds, N., Johnson, E. & Wert, J. A. The effect of partial crystallization on elevated temperature flow stress and room temperature hardness of a bulk amorphous Mg60Cu30Y10 alloy. Acta Mater. 52, 1989–1995 (2004).

    Article  CAS  Google Scholar 

  28. Lienert, U. et al. High spatial resolution strain measurements within bulk materials by slit-imaging. Mater. Res. Soc. Symp. Proc. 590, 241–246 (2000).

    Article  CAS  Google Scholar 

  29. Lienert, U. et al. Focusing optics for high-energy X-ray diffraction. J. Synchrotron Radiat. 5, 226–231 (1998).

    Article  CAS  Google Scholar 

  30. Suortti, P. et al. Monochromators for high-energy synchrotron radiation. Z. Phys. Chem. 215, 1419–1435 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The sample preparation was performed by M. Cheng, N. Pryds, and U. Wolff. For assistance with the experiment we thank T. Buslaps. Discussions with R.V. Martins, M.M. Nielsen and P. Sommer-Larsen are appreciated. This work was supported by the Danish National Research Foundation and the Danish Natural Science Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning F. Poulsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulsen, H., Wert, J., Neuefeind, J. et al. Measuring strain distributions in amorphous materials. Nature Mater 4, 33–36 (2005). https://doi.org/10.1038/nmat1266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing