Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lock-and-key effect in the surface diffusion of large organic molecules probed by STM

Abstract

A nanoscale understanding of the complex dynamics of large molecules at surfaces is essential for the bottom-up design of molecular nanostructures1,2,3,4,5,6,7,8. Here we show that we can change the diffusion coefficient of the complex organic molecule known as Violet Lander (VL, C108H104) on Cu(110) by two orders of magnitude by using the STM at low temperatures to switch between two adsorption configurations that differ only in the molecular orientation with respect to the substrate lattice. From an interplay with molecular dynamics simulations, we interpret the results within a lock-and-key model similar to the one driving the recognition between biomolecules: the molecule (key) is immobilized only when its orientation is such that the molecular shape fits the atomic lattice of the surface (lock); otherwise the molecule is highly mobile.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: 'Parallel' and 'rotated' VL molecules on a Cu surface.
Figure 2: Snapshots of an STM movie recorded at 180 K.
Figure 3: Ball-models for VL molecules adsorbed on a Cu(110) surface.
Figure 4: Molecular dynamics simulations showing the temporal evolution of VL molecules adsorbed on Cu(110) after an initial impulse.

References

  1. Rosei, F. et al. Properties of large organic molecules on metal surfaces. Prog. Surf. Sci. 71, 95–146 (2003).

    CAS  Article  Google Scholar 

  2. Rosei, F. et al. Organic molecules acting as templates on metal surfaces. Science 296, 328–331 (2002).

    CAS  Article  Google Scholar 

  3. Moresco, F. et al. Probing the different stages in contacting a single molecular wire. Phys. Rev. Lett. 91, 036601 (2003).

    Article  Google Scholar 

  4. Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y. & Mashiko, S. Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 413, 619–621 (2001).

    CAS  Article  Google Scholar 

  5. Barth, J. V. et al. Building Supramolecular nanostructures at surfaces by hydrogen bonding. Angew. Chem. Int. Edn Engl. 39, 1230–1234 (2000).

    CAS  Article  Google Scholar 

  6. Theobald, J. A., Oxtoby, N. S., Phillips, M. A., Champness, N. R. & Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 424, 1029–1031 (2003).

    CAS  Article  Google Scholar 

  7. Eremtchenko, M., Schaefer, J. A. & Tautz, F. S. Understanding and tuning the epitaxy of large aromatic adsorbates by molecular design. Nature 425, 602–605 (2003).

    CAS  Article  Google Scholar 

  8. Gimzewski, J. K. & Joachim, C. Nanoscale science of single molecules using local probes. Science 283, 1683–1688 (1999).

    CAS  Article  Google Scholar 

  9. Cai, C. et al. Oblique incidence organic molecular beam deposition and nonlinear optical properties of organic thin films with a stable in-plane directional order. Adv. Mater. 11, 745–749 (1999).

    CAS  Article  Google Scholar 

  10. Lang, H. P., Hegner, M., Meyer, E. & Gerber, C. Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology. Nanotechnology 13, R29–R36 (2002).

    CAS  Article  Google Scholar 

  11. Weckesser, J., Barth, J. V. & Kern, K. Direct observation of surface diffusion of large organic molecules at metal surfaces: PVBA on Pd(110). J. Chem. Phys. 110, 5351–5354 (1999).

    CAS  Article  Google Scholar 

  12. Schunack, M. et al. Long jumps in the surface diffusion of large molecules. Phys. Rev. Lett. 88, 156102 (2002).

    CAS  Article  Google Scholar 

  13. Dobbs, K. D. & Doren, D. J. Dynamics of molecular surface diffusion: Energy distributions and rotation–translation coupling. J. Chem. Phys. 99, 10041–10051 (1993).

    CAS  Article  Google Scholar 

  14. Lægsgaard, E. et al. A high-pressure scanning tunneling microscope. Rev. Sci. Instrum. 72, 3537–3542 (2001).

    Article  Google Scholar 

  15. Besenbacher, F. Scanning tunnelling microscopy studies of metal surfaces. Rep. Prog. Phys. 59, 1737–1802 (1996).

    CAS  Article  Google Scholar 

  16. Horch, S. et al. Enhancement of surface self-diffusion of platinum atoms by adsorbed hydrogen. Nature 398, 134–136 (1999).

    CAS  Article  Google Scholar 

  17. Schaub, R. et al. Oxygen-mediated diffusion of oxygen vacancies on the TiO2(110) surface. Science 299, 377–379 (2003).

    CAS  Article  Google Scholar 

  18. Gourdon, A. Synthesis of “molecular Landers”. Eur. J. Org. Chem. 2797–2801 (1998).

  19. Zambelli, T. et al. Conformations of a long molecular wire with legs on a Cu(100) surface. Chem. Phys. Lett. 348, 1–6 (2001).

    CAS  Article  Google Scholar 

  20. Otero, R. et al. Nanostructuring Cu surfaces using custom-designed molecular molds. Nano Lett. 4, 75–78 (2004).

    CAS  Article  Google Scholar 

  21. Legoas, S. B. et al. Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 90, 055504 (2003).

    CAS  Article  Google Scholar 

  22. Baughman, R. H. & Galvão, D. S. Crystalline networks with unusual predicted mechanical and thermal properties. Nature 365, 735–737 (1993).

    CAS  Article  Google Scholar 

  23. Stryer, L. Biochemistry (Freeman, New York, 1997).

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Danish Ministry for Science, Technology and Innovation through the iNANO Center, from the VELUX foundation and from the EU network 'Manipulation of individual atoms and molecules' (AMNIST). R.O. acknowledges financial support from the EU through a Marie Curie Individual Fellowship. F.S., S.B.L. and D.S.G. acknowledge financial support from the Brazilian Agencies CNPq and FAPESP. We thank A. Gourdon for providing the molecules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flemming Besenbacher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Otero, R., Hümmelink, F., Sato, F. et al. Lock-and-key effect in the surface diffusion of large organic molecules probed by STM. Nature Mater 3, 779–782 (2004). https://doi.org/10.1038/nmat1243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1243

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing