Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides

Abstract

Innovative strategies to produce well-defined nanoparticles and other nanostructures such as nanofibres, quantum wells and mesoporous materials have revitalized materials science1,2 for the potential benefit to society. Here, we report a controlled process, involving soft-chemistry-based deposition, template-assisted mesostructured growth, and tuned annealing conditions that allows the preparation of ordered mesoporous crystalline networks and mesostructured nano-island single layers, composed of multicationic metal oxides having perovskite, tetragonal or ilmenite structures. This strategy to obtain meso-organized multi-metal-oxide nanocrystalline films (M3NF) bridges the gap between conventional mesoporous materials and the remarkable properties of crystalline ternary or quaternary metallic oxides. Nanocrystalline mesoporous films with controlled wall thickness (10–20 nm) of dielectric SrTiO3, photoactive MgTa2O6 or ferromagnetic semi-conducting CoxTi1−xO2−x were prepared by evaporation-induced self-assembly (EISA) using a specially designed non-ionic block-copolymer template. A tuned thermal treatment of the mesoporous films permits the transfer of the wall structure into nanocrystallites, with all tectonic units being tightly incorporated into mechanically stable ordered tri- or bidimensional nanocrystalline networks. This methodology should allow multifunctionalization, miniaturization and integration during development of devices such as smart sensors and actuators, better-performing photocatalysts, and fast electrochromic devices. On the other hand, organized arrays of dispersed ferromagnetic or ferroelectric nanoparticles are promising materials for spintronics and for cheap, non-volatile 'flash' memories.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Scheme of the mesocrystallization process where the three critical steps are detailed.
Figure 2: HRTEM images showing the typical morphology of a SrTiO3 mesoporous ordered network before and after crystallization into M3NF.
Figure 3: In situ time-resolved simultaneous SAXS and WAXS investigations.
Figure 4: The deposition and crystallization processes used to prepare single layers of crystalline nano-islands with controlled dimension and dispersity.

References

  1. 1

    WTEC Panel Report on Nanostructure Science and Technology: R & D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices (eds Siegel, R. W., Hu, E. & Roco, M. C) (web version: http://www.nano.gov; Kluwer, Dordrecht, 1999).

  2. 2

    Soler-Illia, G. J. A. A., Sanchez, C., Lebeau, B. & Patarin, J. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 102, 4093–4138 (2002).

  3. 3

    Board of Chemical Sciences in the 21st Century of the National Research Council. Beyond the Molecular Frontier; Challenges for Chemistry and Chemical Engineering (The National Academy Press, Washington, 2004).

  4. 4

    Matsumoto, Y. et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–856 (2001).

  5. 5

    Nagarajan, V. et al. Dynamics of ferroelastic domains in ferroelectric thin films. Nature Mater. 2, 43–47 (2003).

  6. 6

    Bhattacharya, K. & Ravichandran, G. Ferroelectric perovskites for electromechanical actuation. Acta Mater. 51, 5941–5960 (2003).

  7. 7

    Chu, M. -W. et al. Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nature Mater. 3, 87–90 (2004).

  8. 8

    Nazeerduddin, M. K. et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge transfer sensitizers ((X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrode. J. Am. Chem. Soc. 115, 6382–6390 (1993).

  9. 9

    Schattka, J. H., Shchukin, D. G., Jia, J. G., Antonietti, M. & Caruso, R. A. Photocatalytic activities of porous titania and titania/zirconia structures formed by using a polymer gel templating. Chem. Mater. 14, 5103–5108 (2002).

  10. 10

    Kudo, A., Kato, H. & Nakazawa, S. Water splitting into H2 and O2 on new Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures. J. Phys. Chem. B 104, 571–575 (2000).

  11. 11

    Yang, P. D. et al. Hierarchically ordered oxides. Science 282, 2244–2246 (1998).

  12. 12

    Tian, B. Z. et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nature Mater. 2, 159–163 (2003).

  13. 13

    Crepaldi, E. L. et al. Controlled formation of highly ordered cubic and hexagonal mesoporous nanocrystalline yttria-zirconia and ceria-zirconia thin films exhibiting high thermal stability. Angew. Chem. Int. Edn 42, 347–351 (2003).

  14. 14

    Katou, T. et al. Crystallization of an ordered mesoporous Nb-Ta oxide. Angew. Chem. Int. Edn 42, 2382–2385 (2003).

  15. 15

    Gao, F., Lu, Q. Y. & Zhao, D. Y. Synthesis of crystalline mesoporous CdS semiconductor nanoarrays through a mesoporous SBA-15 silica template. Adv. Mater. 15, 739–742 (2003).

  16. 16

    Tian, B. Z. et al. Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. J. Am. Chem. Soc. 126, 865–875 (2004).

  17. 17

    Chambers, S. A. & Farrow, R. F. C. V. New possibilities for ferromagnetic semiconductors. Mater. Res. Soc. Bull. 28, 729–733 (2004).

  18. 18

    Szafraniak, I., Harnagea, C., Scholz, R., Hesse, D. & Alexe, M. Ferroelectric epitaxial nanocrystals obtained by a self-patterning method. Appl. Phys. Lett. 83, 2211–2213 (2003).

  19. 19

    Lu, Y. et al. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398, 223–226 (1999).

  20. 20

    Yang, H., Coombs, N., Sokolov, I. & Ozin, G. A. Free-standing and oriented mesoporous silica films grown at the air-water interface. Nature 381, 589–592 (1996).

  21. 21

    Yang, H., Kuperman, A., Coombs, N., Mamiche-Afara, S. & Ozin, G. A. Synthesis of oriented films of mesoporous silica on mica. Nature 379, 703–705 (1996).

  22. 22

    Grosso, D. et al. Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv. Funct. Mater. 14, 309–322 (2004).

  23. 23

    Thomas, A., Schlaad, H., Smarsly, B. & Antonietti, M. Replication of lyotropic block copolymer mesophases into porous silica by nanocasting: Learning about finer details of polymer self-assembly. Langmuir 19, 4455–4459 (2003).

  24. 24

    Smarsly, B. et al. Highly crystalline cubic mesoporous TiO2 with 10nm pore diameter made with a new block copolymer template. Chem. Mater. 16, 2948–2952 (2004).

  25. 25

    Yang, P., Zhao, D., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 583, 395–400 (1998).

  26. 26

    Cagnol, F. et al. Humidity-controlled mesostructuration in CTAB-templated silica thin film processing. The existence of a modulable steady state. J. Mater. Chem. 13, 61–66 (2003).

  27. 27

    Grosso, D. et al. Highly porous TiO2 anatase optical thin films with cubic mesostructure stabilized at 700 °C. Chem. Mater. 24, 4562–4570 (2003).

  28. 28

    Zhang, Y. H. & Reller, A. Phase transformation and grain growth of doped nanosized titania. Mater. Sci. Eng. 19, 323–326 (2002).

  29. 29

    Grosso, D., Soler Illia, G. J. A. A., Babonneau, F. & Sanchez, C. Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels. Adv. Mater. 13, 1085–1090 (2001).

  30. 30

    Crepaldi, E. L. et al. Controlled formation of highly organized mesoporous titania thin films: From mesostructured hybrids to mesoporous nanoanatase TiO2 . J. Am. Chem. Soc. 125, 9770–9786 (2003).

Download references

Acknowledgements

The authors would like to thank C. Sinturel (Université d'Orléans, France), A. Brunet-Brunneau (Université Pierre et Marie Curie, France), and D. Jalabert (Centre de Microscopie d'Orléans, France) for AFM, RBS and HRTEM analyses respectively. The European community is greatly acknowledged for funding experiments at the Elettra Synchrotron facility.

Author information

Correspondence to Clément Sanchez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Further reading