Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Actin-based metallic nanowires as bio-nanotransporters

Abstract

The synthesis of conductive nanowires or patterned conductive nanoelements is a challenging goal for the future fabrication of nanoscale circuitry1. Similarly, the realization of nanoscale mechanics might introduce a new facet to the area of nanobiotechnology. Here we report on the design of conductive and patterned actin-based gold nanowires, and on the ATP-driven motility of the nano-objects. The polymerization of G-actin labelled with Au nanoparticles, followed by the catalytic enlargement of the nanoparticles, yields gold wires (1–4 μm long and 80–200 nm high) exhibiting high electrical conductivity. The polymerization of the Au nanoparticle/G-actin monomer followed by the polymerization of free G-actin, or alternatively the polymerization of the Au-nanoparticle-labelled G-actin on polymerized F-actin followed by the catalytic enlargement of the particles, yields patterned actin–Au wire–actin or Au wire–actin–Au wire nanostructures, respectively. We demonstrate the ATP-fuelled motility of the actin–Au wire–actin filaments on a myosin interface. These actin-based metallic wires and their nanotransporting funcionality introduce new concepts for developing biological/inorganic hybrid devices.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The assembly of actin-based Au nanowires.
Figure 2: Synthesis and structure of patterned actin-based Au nanowires.
Figure 3: Electrical conductivity of an actin-based Au nanowire.
Figure 4: ATP-fuelled motility of the actin–Au nanoblock–actin filaments on a myosin interface.

References

  1. 1

    Niemeyer, C.M. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew. Chem. Int. Edn 40, 4128–4158 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998).

    CAS  Article  Google Scholar 

  3. 3

    Patolsky, F., Weizmann, Y., Lioubashevski, O. & Willner, I. Au-nanoparticle nanowires based on DNA and polylysine templates. Angew. Chem. Int. Edn 41, 2323–2327 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Richter, J. et al. Construction of highly conductive nanowires on a DNA template. Appl. Phys. Lett. 78, 536–538 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Mertig, M. et al. DNA as a selective metallization template. Nano Lett. 2, 841–844 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Manson, C.F. & Wooley, A.T. DNA-templated construction of copper nanowires. Nano Lett. 3, 359–363 (2003).

    Article  Google Scholar 

  7. 7

    Scheibel, T. et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl Acad. Sci. USA 100, 4527–4532 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    CAS  Article  Google Scholar 

  9. 9

    Keren, K. et al. Sequence-specific molecular lithography on single DNA molecules. Science 297, 72–75 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    CAS  Article  Google Scholar 

  11. 11

    De La Cruz, E.M. The kinetic mechanism of myosin V. Proc. Natl Acad. Sci. USA 96, 13726–13731 (1999).

    CAS  Article  Google Scholar 

  12. 12

    De La Cruz, E.M. Kinetic mechanism and regulation of myosin VI. J. Biol. Chem. 276, 32373–32381 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Mehta, A. Myosin learns to walk. J. Cell Sci. 114, 1981–1998 (2001).

    CAS  Google Scholar 

  14. 14

    Yanagida, T. & Iwane, A.H. A large step for myosin. Proc. Natl Acad. Sci. USA 97, 9357–9359 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Vale, R.D. & Milligan, R.A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Rief, M. et al. Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl Acad. Sci. USA 97, 9482–9486 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Sellers, J.R. et al. Myosin-specific adaptations of the motility assay. Methods Cell Biol. 39, 23–49 (1993).

    CAS  Article  Google Scholar 

  18. 18

    Le Goff, L., Hallaschek, O., Frey, E. & Amblard, F. Tracer studies on F-actin fluctuations. Phys. Rev. Lett. 89, 258101 (2002).

    Article  Google Scholar 

  19. 19

    Suzuki, N. et al. Preparation of bead-tailed actin filaments: estimation of the torque produced by the sliding force in an in vitro motility assay. Biophys. J. 70, 401–408 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Doron, A., Katz, E. & Willner, I. Organization of Au colloids as monolayer films onto ITO glass surfaces—application of the metal colloid films as base interfaces to construct redox-active monolayers. Langmuir 11, 1313–1317 (1995).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. F. Hainfeld, Biology Department, Brookhaven National Laboratory, USA, for providing us with the STEM image of the Au-nanoparticle-modified G-actin. This research is supported by the German–Israeli Foundation (GIF).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Itamar Willner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Patolsky, F., Weizmann, Y. & Willner, I. Actin-based metallic nanowires as bio-nanotransporters. Nature Mater 3, 692–695 (2004). https://doi.org/10.1038/nmat1205

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing