Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Protein-modified nanocrystalline diamond thin films for biosensor applications


Diamond exhibits several special properties, for example good biocompatibility and a large electrochemical potential window, that make it particularly suitable for biofunctionalization and biosensing. Here we show that proteins can be attached covalently to nanocrystalline diamond thin films. Moreover, we show that, although the biomolecules are immobilized at the surface, they are still fully functional and active. Hydrogen-terminated nanocrystalline diamond films were modified by using a photochemical process to generate a surface layer of amino groups, to which proteins were covalently attached. We used green fluorescent protein to reveal the successful coupling directly. After functionalization of nanocrystalline diamond electrodes with the enzyme catalase, a direct electron transfer between the enzyme's redox centre and the diamond electrode was detected. Moreover, the modified electrode was found to be sensitive to hydrogen peroxide. Because of its dual role as a substrate for biofunctionalization and as an electrode, nanocrystalline diamond is a very promising candidate for future biosensor applications.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: AFM and KFM images of a patterned NCD sample.
Figure 2: Summary of the biofunctionalization process.
Figure 3: XPS spectra of the biofunctionalized NCD samples.
Figure 4: Fluorescence image of a NCD sample patterned by oxidation and functionalized with GFP.
Figure 5: Cyclic voltammograms (CV), showing the iU current–voltage curves of the electrodes.
Figure 6: Cyclic voltammograms of an untreated NCD electrode (black) and a catalase-modified NCD electrode (red), measured in pure phosphate buffer.


  1. Collings, A.F. & Caruso, F. Biosensors: recent advances. Rep. Prog. Phys. 60, 1397–1445 (1997).

    CAS  Article  Google Scholar 

  2. Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. BME 17, 70–72 (1970).

    Article  Google Scholar 

  3. Linford, M.R., Fenter, P., Eisenberger, P.M. & Chidsey, C.E.D. Alkyl monolayers on silicon prepared from 1-alkenes and hydrogenated silicon. J. Am. Chem. Soc. 117, 3145–3155 (1995).

    CAS  Article  Google Scholar 

  4. Cai, W. et al. Chemical modification and patterning of iodine-terminated silicon surfaces using visible light. J. Phys. Chem. B 106, 2656–2664 (2002).

    CAS  Article  Google Scholar 

  5. Lin, Z. et al. DNA attachment and hybridization at the silicon (100) surface. Langmuir 18, 788–796 (2002).

    CAS  Article  Google Scholar 

  6. Bakowicz, K. & Mitura, S. Biocompatibility of NCD. J. Wide Bandgap Mater. 9, 261–272 (2002).

    CAS  Article  Google Scholar 

  7. Miller, J.B. & Brown, D.W. Photochemical modification of diamond films. Langmuir 12, 5809–5817 (1996).

    CAS  Article  Google Scholar 

  8. Ando, T. et al. Diffuse reflectance infrared Fourier-transform study of the direct thermal fluorination of diamond powder surfaces. J. Chem. Soc. Faraday Trans. 91, 3209–3212 (1995).

    CAS  Article  Google Scholar 

  9. Ohtani, B. et al. Surface functionalization of doped CVD diamond via covalent bond. An XPS study on the formation of surface-bound quaternary pyridinium salt. Chem. Lett. 27, 953–954 (1998).

    Article  Google Scholar 

  10. Gruen, D.M. Nanocrystalline diamond films. Annu. Rev. Mater. Sci. 29, 211–259 (1999).

    CAS  Article  Google Scholar 

  11. Teukam, Z. et al. Shallow donors with high n-type electrical conductivity in homoepitaxial deuterated boron-doped diamond layers. Nature Mater. 2, 482–486 (2003).

    CAS  Article  Google Scholar 

  12. Koizumi, S., Watanabe, K., Hasegawa, M. & Kanda, H. Ultraviolet emission from a diamond pn junction. Science 292, 1899–1901 (2001).

    CAS  Article  Google Scholar 

  13. Hupert, M. et al. Conductive diamond thin-films in electrochemistry. Diamond Rel. Mater. 12, 1940–1949 (2003).

    CAS  Article  Google Scholar 

  14. Strother, T. et al. Photochemical functionalization of diamond films. Langmuir 18, 968–971 (2002).

    CAS  Article  Google Scholar 

  15. Yang, W. et al. DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nature Mater. 1, 253–257 (2002).

    CAS  Article  Google Scholar 

  16. Pleskov, Y.U., Sakharova, A.Y., Krotova, M.D., Bouilov, L.L. & Spitsyn, B.V. Photoelectrochemical properties of semiconductor diamond. J. Electroanal. Chem. 228, 19–27 (1987).

    CAS  Article  Google Scholar 

  17. Landstrass, M.I. & Ravi, K.V. Resistivity of chemical vapor deposited diamond films. Appl. Phys. Lett. 55, 975–977 (1989).

    CAS  Article  Google Scholar 

  18. Maier, F., Riedel, M., Mantel, B., Ristein. J. & Ley, L. Origin of surface conductivity in diamond. Phys. Rev. Lett. 85, 3472–3475 (2000).

    CAS  Article  Google Scholar 

  19. Garrido, J.A., Nebel, C.E. & Stutzmann, M. Capacitance–voltage studies of Al-Schottky contacts on hydrogen-terminated diamond. Appl. Phys. Lett. 81, 637–639 (2002).

    CAS  Article  Google Scholar 

  20. Birrell, J. et al. Bonding structure in nitrogen doped ultrananocrystalline diamond. J. Appl. Phys. 93, 5606–5612 (2003).

    CAS  Article  Google Scholar 

  21. Rezek, B. et al. Fermi level on hydrogen terminated diamond surfaces. Appl. Phys. Lett. 82, 2266–2268 (2003).

    CAS  Article  Google Scholar 

  22. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene-expression. Science 263, 802–805 (1994).

    CAS  Article  Google Scholar 

  23. Armstrong, F.A. & Wilson, G.S. Recent developments in faradaic bioelectrochemistry. Electrochim. Acta 45, 2623–2645 (2000).

    CAS  Article  Google Scholar 

  24. Lai, M.E. & Bergel, A. Direct electrochemistry of catalase on glassy carbon electrodes. Bioelectrochemistry 55, 157–160 (2002).

    CAS  Article  Google Scholar 

  25. Zhang, Z., Chouchane, S., Magliozzo, R.S. & Rusling, J.F. Direct voltammetry and catalysis with mycobacterium tuberculosis catalase-peroxidase, peroxidases, and catalase in lipid films. Anal. Chem. 74, 163–170 (2002).

    CAS  Article  Google Scholar 

  26. Switala, J. & Loewen, P.C. Diversity of properties among catalases. Arch. Biochem. Biophys. 401, 145–154 (2002).

    CAS  Article  Google Scholar 

  27. Schoenfisch, M.H. & Pemberton, J.E. Air stability of alkanethiol self-assembled monolayers on silver and gold surfaces. J. Am. Chem. Soc. 120, 4502–4513 (1998).

    CAS  Article  Google Scholar 

Download references


We thank M. Haselbeck for providing the green fluorescent protein, and E. Bertel and N. Memmel for discussions on the properties of nanocrystalline diamond, as well as the Raman spectra shown as supplementary information. We also thank the staff of BESSY for help during the experiments. A.H. acknowledges the Technische Universität München for financial support within a PhD fellowship. J.H. thanks the Alexander von Humboldt Foundation for financial support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jose A. Garrido.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Härtl, A., Schmich, E., Garrido, J. et al. Protein-modified nanocrystalline diamond thin films for biosensor applications. Nature Mater 3, 736–742 (2004).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing