Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diamond-structured photonic crystals

Abstract

Certain periodic dielectric structures can prohibit the propagation of light for all directions within a frequency range. These 'photonic crystals' allow researchers to modify the interaction between electromagnetic fields and dielectric media from radio to optical wavelengths. Their technological potential, such as the inhibition of spontaneous emission, enhancement of semiconductor lasers, and integration and miniaturization of optical components, makes the search for an easy-to-craft photonic crystal with a large bandgap a major field of study. This progress article surveys a collection of robust complete three-dimensional dielectric photonic-bandgap structures for the visible and near-infrared regimes based on the diamond morphology together with their specific fabrication techniques. The basic origin of the complete photonic bandgap for the 'champion' diamond morphology is described in terms of dielectric modulations along principal directions. Progress in three-dimensional interference lithography for fabrication of near-champion diamond-based structures is also discussed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The initial diamond structures.
Figure 2: Layered diamond structures.
Figure 3: Layered diamond structures.
Figure 4: Square spiral diamond.
Figure 5: The level-set diamond D and three-connected diamond structures.
Figure 6: b.c.c. diamond-like structures.

References

  1. 1

    Ho, K.M., Chan, C.T. & Soukoulis, C.M. Existence of a photonic band gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990).

    CAS  Article  Google Scholar 

  2. 2

    El-Kady, I., Sigalas, M.M., Biswas, R., Ho, K.M. & Soukoulis, C.M. Metallic photonic crystals at optical wavelengths. Phys. Rev. B 62, 15299–15302 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    CAS  Article  Google Scholar 

  4. 4

    Yablonovitch, E. & Gmitter, T.J. Photonic band structure: the face-centered-cubic case. Phys. Rev. Lett. 63, 1950–1953 (1989).

    CAS  Article  Google Scholar 

  5. 5

    Leung, K.M. & Liu, Y.F. Full wave vector calculation of photonic band structures in face-centered-cubic dielectric media. Phys. Rev. Lett. 65, 2646–2649 (1990).

    CAS  Article  Google Scholar 

  6. 6

    Zhang, Z. & Satpathy, S. Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations. Phys. Rev. Lett. 65, 2650–2653 (1990).

    CAS  Article  Google Scholar 

  7. 7

    Maddox, J. Photonic band-gaps bite the dust. Nature 348, 481–481 (1990).

    Article  Google Scholar 

  8. 8

    Sozuer, H.S., Haus, J.W. & Inguva, R. Photonic bands: convergence problems with the plane-wave method. Phys. Rev. B 45, 13962–13972 (1992).

    CAS  Article  Google Scholar 

  9. 9

    Moroz, A. Metallo-dielectric diamond and zinc-blende photonic crystal. Phys. Rev. B 66, 115109 (2002).

    Article  Google Scholar 

  10. 10

    Garcia-Santamaria, F. et al. Nanorobotic manipulation of microspheres for on-chip diamond architectures. Adv. Mater. 14, 1144–1147 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Chan, C.T., Ho, K.M. & Soukoulis, C.M. Photonic band gaps in experimentally realizable periodic dielectric structures. Europhys. Lett. 16, 563–568 (1991).

    CAS  Article  Google Scholar 

  12. 12

    Chan, C.T., Datta, S., Ho, K.M. & Soukoulis, C.M. A-7 structure: A family of photonic crystals. Phys. Rev. B 50, 1988–1991 (1994).

    CAS  Article  Google Scholar 

  13. 13

    Yablonovitch, E. & Gmitter, T.J. Photonic band structure: the face-centered cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991).

    CAS  Article  Google Scholar 

  14. 14

    Ho, K.M. et al. Photonic band gaps in three-dimensions: new layer-by-layer periodic structures. Solid State Commun. 89, 413–416 (1994).

    CAS  Article  Google Scholar 

  15. 15

    Ozbay, E. et al. Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods. Phys. Rev. B 50, 1945–1948 (1994).

    CAS  Article  Google Scholar 

  16. 16

    Lin, S.Y. et al. A three-dimensional photonic crystal operating at infrared wavelengths. Nature 394, 251–253 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Fleming J.G. & Lin, S.Y. Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm. Opt. Lett. 24, 49–51 (1999).

    CAS  Article  Google Scholar 

  18. 18

    Noda, S. et al. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289, 604–606 (2000).

    CAS  Article  Google Scholar 

  19. 19

    Aoki, K. et al. Three-dimensional photonic crystals for optical wavelengths assembled by micromanipulation. Appl. Phys. Lett. 81, 3122–3124 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Cumpston, B.H. et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecomunications. Nature Mater. 3, 444–447 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Fan, S. et al. Design of three-dimensional photonic crystals at submicron lengthscales. Appl. Phys. Lett. 65, 1466–1468 (1994).

    CAS  Article  Google Scholar 

  23. 23

    Maldovan, M. A layer-by-layer photonic crystal with a two-layer periodicity. Appl. Phys. Lett. 85, 911–913 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Johnson, S.G. & Joannopoulos, J.D. Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap. App. Phys. Lett. 77, 3490–3492 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Qi, M.H. et al. A three-dimensional optical photonic crystal with designed point defects. Nature 429, 538–542 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Leung, K.M. Diamondlike photonic band-gap crystal with a sizable band gap. Phys. Rev. B 56, 3517–3519 (1997).

    CAS  Article  Google Scholar 

  27. 27

    Roundy, D. & Joannopoulos, J.D. Photonic crystal structure with square symmetry within each layer and a three-dimensional band gap. Appl. Phys. Lett. 82, 3835–3837 (2003).

    CAS  Article  Google Scholar 

  28. 28

    Maldovan M, Thomas, E.L. & Carter, W.C. A layer-by-layer diamond-like woodpile structure with a large photonic band gap. Appl. Phys. Lett. 84, 362–364 (2003).

    Article  Google Scholar 

  29. 29

    Chutinan, A. & Noda, S. Spiral three-dimensional photonic-band-gap structure. Phys. Rev. B 57 R2006–R2008 (1998).

    CAS  Article  Google Scholar 

  30. 30

    Toader, O. & John, S. Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals. Science 292, 1133–1135 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Maldovan, M. et al. Photonic properties of bicontinuous cubic microphases. Phys. Rev. B 65, 165123 (2002).

    Article  Google Scholar 

  32. 32

    Wohlgemuth, M. et al. Triply periodic bicontinuous cubic microdomain morphologies by symmetries. Macromolecules 34, 6083–6089 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Martin-Moreno, L., Garcia-Vidal, F.J. & Somoza, A.M. Self-assembled triply periodic minimal surfaces as molds for photonic band gap materials. Phys. Rev. Lett. 83, 73–75 (1999).

    CAS  Article  Google Scholar 

  34. 34

    Campbell, M. et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000).

    CAS  Article  Google Scholar 

  35. 35

    Ullal, C.K. et al. Triply periodic bicontinuous structures through interference lithography: a level-set approach. J. Opt Soc. Am. A 20, 948–954 (2003).

    Article  Google Scholar 

  36. 36

    Sharp, D.N., Turberfield, A.J. & Denning, R.G. Holographic photonic crystals with diamond symmetry. Phys. Rev. B 68, 205102 (2003).

    Article  Google Scholar 

  37. 37

    Toader, O. & John, S. Photonic band gap architectures for holographic lithography. Phys. Rev. Lett. 92, 043905 (2004).

    Article  Google Scholar 

  38. 38

    Maldovan, M., Ullal, C.K., Carter, W.C. & Thomas, E.L. Exploring for 3D photonic band gap structures: the 11 f.c.c. groups. Nature Mater. 2, 664–667 (2003).

    CAS  Article  Google Scholar 

  39. 39

    Wells, A.F. Three-dimensional Nets and Polyhedra (Wiley, New York, 1977).

    Google Scholar 

  40. 40

    Maldovan, M., Carter, W.C. & Thomas, E.L. Three-dimensional dielectric network structures with large photonic band gaps. Appl. Phys. Lett. 83, 5172–5174 (2003).

    CAS  Article  Google Scholar 

  41. 41

    Ullal, C.K. et al. Photonic crystals through holographic lithography: simple cubic, diamond like and gyroid like structures. Appl. Phys. Lett. 84, 5434–5436 (2004).

    CAS  Article  Google Scholar 

  42. 42

    Tselikas, Y. et al. Architecturally-induced tricontinuous cubic morphology in compositionally symmetric miktoarm starblock copolymers. Macromolecules 29, 3390–3396 (1996).

    CAS  Article  Google Scholar 

  43. 43

    Hajduk, D.A. et al. The gyroid: a new equilibrium morphology in weakly segregated diblock copolymers. Macromolecules 27, 4063–4075 (1994).

    CAS  Article  Google Scholar 

  44. 44

    Urbas, A.M., Maldovan, M., DeRege, P. & Thomas, E.L. Bicontinuous cubic block copolymer photonic crystals. Adv. Mater. 14, 1850–1853 (2002).

    CAS  Article  Google Scholar 

  45. 45

    Lee, W.M., Pruzinsky, S.A. & Braun, P.V. Multi-photon polymerization of waveguide structure within three-dimensional photonic crystals. Adv. Mater. 14, 271–274 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Institute for Soldier Nanotechnologies of the US Army Research Office under contract DAAD-19-02-0002.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Maldovan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maldovan, M., Thomas, E. Diamond-structured photonic crystals. Nature Mater 3, 593–600 (2004). https://doi.org/10.1038/nmat1201

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing