Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surface-plasmon-enhanced light emitters based on InGaN quantum wells

Abstract

Since 1993, InGaN light-emitting diodes (LEDs) have been improved and commercialized1,2, but these devices have not fulfilled their original promise as solid-state replacements for light bulbs as their light-emission efficiencies have been limited2. Here we describe a method to enhance this efficiency through the energy transfer between quantum wells (QWs) and surface plasmons (SPs). SPs can increase the density of states and the spontaneous emission rate in the semiconductor3,4,5,6,7,8,9, and lead to the enhancement of light emission by SP–QW coupling10,11. Large enhancements of the internal quantum efficiencies (ηint) were measured when silver or aluminium layers were deposited 10 nm above an InGaN light-emitting layer, whereas no such enhancements were obtained from gold-coated samples. Our results indicate that the use of SPs would lead to a new class of very bright LEDs, and highly efficient solid-state light sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoluminescence measurements.
Figure 2: PL enhancement ratios.
Figure 3: Topographic and luminescence images.
Figure 4: Temperature dependence and Purcell enhancement factors.

Similar content being viewed by others

References

  1. Nakamura, S., Mukai, T. & Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994).

    Article  CAS  Google Scholar 

  2. Nakamura, S. & Fasol, G. The Blue Laser Diode: GaN-Based Light Emitting Diode and Lasers (Springer, Berlin, 1997).

    Book  Google Scholar 

  3. Köck, A., Gornik, E., Hauser, M. & Beinstingl, W. Strongly directional emission from AlGaAs/GaAs light-emitting diode. Appl. Phys. Lett. 57, 2327–2329 (1990).

    Article  Google Scholar 

  4. Hecker, N.E., Hopfel, R.A. & Sawaki, N. Enhanced light emission from a single quantum well located near a metal coated surface. Physica E 2, 98–101 (1998).

    Article  CAS  Google Scholar 

  5. Hecker, N.E., Hopfel, R.A., Sawaki, N., Maier, T. & Strasser, G. Surface plasmon-enhanced photoluminescence from a single quantum well. Appl. Phys. Lett. 75, 1577–1579 (1999).

    Article  CAS  Google Scholar 

  6. Barnes, W.L. Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices. J. Light. Tech. 17, 2170–2182 (1999).

    Article  Google Scholar 

  7. Gianordoli, S. et al. Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes. Appl. Phys. Lett. 77, 2295–2297 (2000).

    Article  CAS  Google Scholar 

  8. Vuckovic, J., Loncar, M. & Scherer, A. Surface plasmon enhanced light-emitting diode. IEEE J. Quant. Elec. 36, 1131–1144 (2000).

    Article  CAS  Google Scholar 

  9. Hobson, P.A., Wedge, S., Wasey, J.A.E., Sage, I. & Barnes, W.L. Surface plasmon mediated emission from organic light emitting diodes. Adv. Mater. 14, 1393–1396 (2002).

    Article  CAS  Google Scholar 

  10. Gontijo, I. et al. Coupling of InGaN quantum-well photoluminescence to silver surface plasmons. Phys. Rev. B 60. 11564–11567 (1999).

    Article  CAS  Google Scholar 

  11. Neogi, A. et al. Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys. Rev. B 66, 153305 (2002).

    Article  Google Scholar 

  12. Ebbesen, T.W., Lezec, H.J., Ghasemi, H.F., Thio, T. & Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  CAS  Google Scholar 

  13. Schroter, U. & Heitmann, D. Surface-plasmon-enhanced transmission through metallic gratings. Phys. Rev. B 58, 15419–15421 (1998).

    Article  CAS  Google Scholar 

  14. Kitson, S.C., Barnes, W.L. & Sambles, J.R. A full photonic band gap for surface modes in the visible. Phys. Rev. Lett. 77, 2670–2673 (1996).

    Article  CAS  Google Scholar 

  15. Barnes, W.T., Preist, T.W., Kitson, S.C. & Sambles, J.R. Physical origin of photonic energy gap in the propagation of surface plasmon on grating. Phys. Rev. B 54, 6227–6244 (1996).

    Article  CAS  Google Scholar 

  16. Ford, G.W. & Weber, W.H. Electromagnetic-interactions of molecules with metal-surfaces. Phys. Rep. 113, 195–287 (1984).

    Article  CAS  Google Scholar 

  17. Fleischmann, M., Hendra, P.J. & McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).

    Article  CAS  Google Scholar 

  18. García-Vidal, J.F. & Pendry, J.B. Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 77, 1163–1166 (1996).

    Article  Google Scholar 

  19. Liebsch, A. Surface plasmon dispersion of Ag. Phys. Lev. Lett. 71, 145–148 (1993).

    Article  CAS  Google Scholar 

  20. Kawashima, T., Yoshikawa, H., Adach, S., Fuke, S. & Ohtsuk, K. Optical properties of hexagonal GaN. J. Appl. Phys., 82, 3528–3535 (1997).

    Article  CAS  Google Scholar 

  21. Palik, E.D. Handbook of Optical Constants of Solids (Academic, San Diego, 1985).

    Google Scholar 

  22. Bagchi, A., Duke, C.B., Feibelman, P.J. & Porteus, J.O. Measurement of surface-plasmon dispersion in aluminum by inelastic low-energy electron diffraction. Phys. Rev. Lett. 27, 998–1001 (1971).

    Article  CAS  Google Scholar 

  23. Kawakami, Y. et al. Radiative and nonradiative recombination processes in GaN-based semiconductors. Phys. Status Solidi A 183, 41–50 (2001).

    Article  CAS  Google Scholar 

  24. Narukawa, Y. et al. Phosphor-conversion white light emitting diode using InGaN near-ultraviolet chip. Jpn J. Appl. Phys. 37, L371–L373 (2003).

    Google Scholar 

  25. Purcell, E.M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681–681 (1946).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the US Air Force Office for Scientific Research for their support under contract F49620-03-1-0418.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Scherer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, K., Niki, I., Shvartser, A. et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Mater 3, 601–605 (2004). https://doi.org/10.1038/nmat1198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1198

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing