Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation


Recent advances in optical nanotechnologies by controlling surface plasmon polaritons1 in metallic nanostructures demonstrate high potential for subwavelength-scale waveguiding of light2,3, data storage4, microscopy5 or biophotonics6. Surprisingly, surface phonon polaritons7—infrared counterparts to surface plasmon polaritons—have not been widely explored for nanophotonic applications. As they rely on the infrared or terahertz excitation of lattice vibrations in polar crystals they offer totally different material classes for nanophotonic applications, such as semiconductors and insulators. In an initial step towards nanoscale surface phonon photonics we show evidence that the local properties of surface phonon polaritons can be tailored at a subwavelength-scale by focused ion-beam modification of the crystal structure, even without significant alteration of the surface topography. Such single-step-fabricated, monolithic structures could be used for controlling electromagnetic energy transport by surface phonon polaritons in miniaturized integrated devices operating at infrared or terahertz frequencies. We verify the polaritonic properties of an ion-beam-patterned SiC surface by infrared near-field microscopy8,9. The near-field images also demonstrate nanometre-scale resolved infrared mapping of crystal quality useful in semiconductor processing or crystal growth.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Infrared response of amorphous and crystalline SiC.
Figure 2: Infrared s-SNOM and images taken from the implanted surface.
Figure 3: Local amplitude and phase spectra for different implantation doses.
Figure 4: Infrared near-field amplitude images of Ga+ implanted structures.


  1. Barnes, W.L., Dereux, A. & Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    CAS  Article  Google Scholar 

  2. Salerno, M. et al. Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology. Optoelectron. Rev. 10, 217–224 (2002).

    Google Scholar 

  3. Maier, S.A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    CAS  Article  Google Scholar 

  4. Ditlbacher, H., Krenn, J.R., Lamprecht, B., Leitner, A. & Aussenegg, F.R. Spectrally coded optical data storage by metal nanoparticles. Opt. Lett. 25, 563–565 (2000).

    CAS  Article  Google Scholar 

  5. Specht, M., Pedarnig, J.D., Heckl, W.M. & Hänsch, T.W. Scanning plasmon near-field microscopy. Phys. Rev. Lett. 68, 476–479 (1992).

    CAS  Article  Google Scholar 

  6. Raschke, G. et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3, 935–938 (2003).

    CAS  Article  Google Scholar 

  7. Borstel, G. & Falge, H.J. in Electromagnetic Surface Modes (ed. Boardman, A.D.) 219–248 (Wiley, Chichester, 1982).

    Google Scholar 

  8. Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999).

    CAS  Article  Google Scholar 

  9. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light-matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

    CAS  Article  Google Scholar 

  10. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin Heidelberg, 1988).

    Book  Google Scholar 

  11. Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters (Sringer, Berlin, Heidelberg, 1995).

    Book  Google Scholar 

  12. Ruppin, R. in Electromagnetic Surface Modes (ed. Boardman, A.D.) 345–398 (Wiley, Chichester, 1982).

    Google Scholar 

  13. Kreibig, U., Gartz, M. & Hilger, A. Mie resonances: Sensors for physical and chemical cluster interface properties. Ber. Bunsenges. Phys. Chem. 101, 1593–1604 (1997).

    CAS  Article  Google Scholar 

  14. Greffet, J.-J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    CAS  Article  Google Scholar 

  15. Anderson, M.S. Enhanced infrared absorption with dielectric nanoparticles. Appl. Phys. Lett. 83, 2964–2966 (2003).

    CAS  Article  Google Scholar 

  16. Shvets, G. Photonic approach to making a material with a negative index of refraction. Phys. Rev. B 67, 035109 (2003).

    Article  Google Scholar 

  17. Taubner, T., Hillenbrand, R. & Keilmann, F. Performance of visible and mid-infrared scattering-type near-field optical microscopes. J. Microsc. 210, 311–314 (2003).

    CAS  Article  Google Scholar 

  18. Hillenbrand, R. & Keilmann, F. Complex optical constants on a subwavelength scale. Phys. Rev. Lett. 85, 3029–3032 (2000).

    CAS  Article  Google Scholar 

  19. Hillenbrand, R., Knoll, B. & Keilmann, F. Pure optical contrast in scattering-type scanning near-field optical microscopy. J. Microsc. 202, 77–83 (2001).

    CAS  Article  Google Scholar 

  20. Porto, J.A., Johansson, P., Apell, S.P. & Lopez-Rios, T. Resonance shift effects in apertureless scanning near-field optical microscopy. Phys. Rev. B 67, 085409 (2003).

    Article  Google Scholar 

  21. Zorba, T.T. et al. An infrared study of Ge+ implanted SiC. Appl. Surf. Sci. 102, 120–124 (1996).

    CAS  Article  Google Scholar 

  22. Hillenbrand, R. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction. Ultramicroscopy 100, 421–427 (2004).

    CAS  Article  Google Scholar 

  23. Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    CAS  Article  Google Scholar 

  24. Gierak, J. et al. Optimization of experimental operating parameters for very high resolution focused ion beam applications. J. Vac. Sci. Tech. B 15, 2373–2378 (1997).

    CAS  Article  Google Scholar 

  25. Kalbitzer, S. Semiconductors for optical memories. Curr. Opin. Solid State Mater. Sci. 6, 271–279 (2002).

    CAS  Article  Google Scholar 

  26. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    CAS  Article  Google Scholar 

  27. Beck, M. et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science 295, 301–305 (2002).

    CAS  Article  Google Scholar 

  28. Mutschke, H., Andersen, A.C., Clement, D., Henning, T. & Peiter, G. Infrared properties of SiC particles. Astron. Astrophys. 345, 187–202 (1999).

    CAS  Google Scholar 

Download references


We thank R. Wernhardt (Angewandte Festkörperphysik, Ruhr-Universität Bochum, Germany) and F. Hauf (FEI Company, Oberschleißheim, Germany) for FIB implantation and F. Keilmann, T. Taubner, R. Guckenberger (all Martinsried) and J. Lindner (Universität Augsburg) for stimulating discussions. This work is supported by the Deutsches Bundesministerium für Bildung und Forschung (Nachwuchswettbewerb Nanotechnologie 2002), grant number 03N8705.

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. Hillenbrand.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ocelic, N., Hillenbrand, R. Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation. Nature Mater 3, 606–609 (2004).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing