Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembled single-crystal ferromagnetic iron nanowires formed by decomposition

Abstract

Arrays of perpendicular ferromagnetic nanowires have recently attracted considerable interest for their potential use in many areas of advanced nanotechnology. We report a simple approach to create self-assembled nanowires of α-Fe through the decomposition of a suitably chosen perovskite. We illustrate the principle behind this approach using the reaction 2La0.5Sr0.5FeO3 → LaSrFeO4 + Fe + O2 that occurs during the deposition of La0.5Sr0.5FeO3 under reducing conditions. This leads to the spontaneous formation of an array of single-crystalline α-Fe nanowires embedded in LaSrFeO4 matrix, which grow perpendicular to the substrate and span the entire film thickness. The diameter and spacing of the nanowires are controlled directly by deposition temperature. The nanowires show uniaxial anisotropy normal to the film plane and magnetization close to that of bulk α-Fe. The high magnetization and sizable coercivity of the nanowires make them desirable for high-density data storage and other magnetic-device applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM results of self-assembled nanostructures in La0.5Sr0.5FeO3 thin films.
Figure 2: High-resolution cross-section images of a single α-Fe nanowire.
Figure 3: Room-temperature 57Co CEMS of the film deposited in vacuum.
Figure 4: Room-temperature magnetic properties of α-Fe nanowires.
Figure 5: High-resolution plan-view TEM images of α-Fe nanowires showing the shape and lateral size dependence of the nanowires to deposition temperature.

Similar content being viewed by others

References

  1. Shiraki, M., Wakui, Y., Tokushima, T. & Tsuya, N. Perpendicular magnetic media by anodic oxidation method and their recording. IEEE Trans. Magn. 21, 1465–1467 (1985).

    Article  Google Scholar 

  2. Wagner, R.S. & Ellis, W.C. The vapor-liquid-solid mechanism of crystal growth and its application to silicon. Trans. Metal. Soc. AIME 233, 1053–1064 (1965).

    CAS  Google Scholar 

  3. Li, F. & Metzger, R.M. Activation volume of α-Fe particles in alumite film. J. Appl. Phys. 81, 3806–3808 (1997).

    Article  CAS  Google Scholar 

  4. Huysmans, G.T.A., Lodder, J.C. & Wakui, J. Magnetization curling in perpendicular iron particle arrays (alumite media). J. Appl. Phys. 64, 2016–2021 (1988).

    Article  CAS  Google Scholar 

  5. Metzger, R.M. et al. Magnetic nanowires in hexagonally ordered pores of alumina. IEEE Trans. Magn. 36, 30–35 (2000).

    Article  CAS  Google Scholar 

  6. Sellmyer, D.J., Zheng, M. & Skomski, R. Magnetism of Fe, Co and Ni, nanowires in self-assembled arrays. J. Phys. Condens. Matter 13, R433–R460 (2001).

    Article  CAS  Google Scholar 

  7. Martín, J.I., Nogués, J., Liu, K., Vicente, J.L. & Schuller, I.K. Ordered magnetic nanostructures: fabrication and properties. J. Magn. Magn. Mater. 256, 449–501 (2003).

    Article  Google Scholar 

  8. Chainani, A., Mathew, M. & Sarma, D.D. Electronic structure of La1−xSrxFeO3 . Phys. Rev. B 48, 14818–14825 (1993).

    Article  CAS  Google Scholar 

  9. Yang, J.B. et al. Crystal structure, magnetic properties, and Mössbauer studies of La0.6Sr0.4FeO3-δ prepared by quenching in different atmospheres. Phys. Rev. B 66, 184415 (2002).

    Article  Google Scholar 

  10. Chrisey, D.B & Hubler, G.K. (eds) Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994).

    Google Scholar 

  11. Soubeyroux, J.L., Courbin, P., Fournes, P., Fruchart, D. & Le Flem, G. The phase SrLaFeO4: magnetic and crystalline structure. J. Solid State Chem. 31, 313–320 (1980).

    Article  CAS  Google Scholar 

  12. Omata, T. et al. Electrical and magnetic properties of hole-doped Sr1+xLa1−xFeO4 . Phys. Rev. B 49, 10194–10199 (1994).

    Article  CAS  Google Scholar 

  13. Omata, T. et al. Preparation of oxygen excess SrLaFeO4+δ and its electrical and magnetic properties. Solid State Commun. 88, 807–811 (1993).

    Article  CAS  Google Scholar 

  14. Omata, T. et al. Electronic structure of hole-doped Sr1+xLa1−xFeO4 studied by UPS and XAS. Phys. Rev. B 49, 10200–10205 (1994).

    Article  CAS  Google Scholar 

  15. Aharony, A., Birgeneau, R.J., Coniglio, A., Kastner, M.A. & Stanley, H.E. Magnetic phase diagram and magnetic pairing in doped La2CuO4 . Phys. Rev. Lett. 60, 1330–1333 (1998).

    Article  Google Scholar 

  16. Cava, R.J. et al. Magnetic and electrical properties of La2−xSrxNiO4±δ . Phys. Rev. B 43, 1229–1232 (1991).

    Article  CAS  Google Scholar 

  17. Nagao, M., Tanaka, N. & Mihama, K. High resolution electron microscopy of composite films of gold and magnesium oxide. Jpn J. Appl. Phys. 25, L215–L218 (1986).

    Article  CAS  Google Scholar 

  18. Catana, A., Broom, R.F., Bednorz, J.G., Mannhart, J. & Schlom, D.G. Identification of epitaxial Y2O3 inclusions in sputtered YBa2Cu3O7 films: Impact on film growth. Appl. Phys. Lett. 60, 1016–1018 (1992).

    Article  CAS  Google Scholar 

  19. Lu, P. et al. High density, ultrafine precipitates in YBa2Cu3O7-x thin films prepared by plasma-enhanced metalorganic chemical vapor deposition. Appl. Phys. Lett. 60, 1265–1267 (1992).

    Article  CAS  Google Scholar 

  20. Atzmon, M., Kessler, D.A. & Srolovitz, D.J. Phase separation during film growth. J. Appl. Phys. 72, 442–446 (1992).

    Article  CAS  Google Scholar 

  21. Moshnyaga, V. et al. Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1−x:(MgO)x nanocomposite films. Nature Mater. 2, 247–252 (2003).

    Article  CAS  Google Scholar 

  22. Zheng, H. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004).

    Article  CAS  Google Scholar 

  23. Bozorth, R.M. Ferromagnetism (IEEE Magnetics Soc., Piscataway, 1993).

    Book  Google Scholar 

  24. Skomski, R., Zeng, H. & Sellmyer, D.J. Magnetic localization in transition-metal nanowires. Phys. Rev. B 62, 3900–3904 (2000).

    Article  CAS  Google Scholar 

  25. Vitos, L., Ruban, A.V., Skriver, H.L. & Kollár, J. The surface energy of metals. Surf. Sci. 411, 186–202 (1998).

    Article  CAS  Google Scholar 

  26. Spencer, M.J.S., Hung, A., Snook, I.K. & Yarovsky, I. Density functional theory study of the relaxation and energy of iron surfaces. Surf. Sci. 513, 389–398 (2002).

    Article  CAS  Google Scholar 

  27. Aldén, M., Skriver, H.L., Mirbt, S. & Johansson, B. Surface energy and magnetism of the 3d metals. Surf. Sci. 315, 157–172 (1994).

    Article  Google Scholar 

  28. Haasen, P. Physical Metallurgy 3rd edn (Cambridge Univ. Press, Cambridge, 1996).

Download references

Acknowledgements

This work is supported partly by an ONR MURI grant No. N000140110761, NSF-MRSEC under grant No. DMR-00-80008, and also by the Center for Superconductivity Research at the University of Maryland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramesh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 230 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohaddes-Ardabili, L., Zheng, H., Ogale, S. et al. Self-assembled single-crystal ferromagnetic iron nanowires formed by decomposition. Nature Mater 3, 533–538 (2004). https://doi.org/10.1038/nmat1162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing