Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors

Abstract

Solid ionic conductors are actively sought for their potential application in electrochemical devices, particularly lithium batteries. We have found high ionic conductivity for a large variety of salts dissolved in the highly polar medium based on the plastic-crystal form of succinonitrile (N≡C–CH2–CH2–C≡N). Its high diffusivity, plasticity and solvating power allowed the preparation of a large number of materials with high ionic conductivity, reaching values of 3 mS cm−1 at 25 °C (two orders of magnitude above polymers). Their ease of preparation and processing allowed us to study the influence of the solute on ionic conduction within this medium. Comparisons revealed a dichotomy between plastic crystals and conventional polymer media. The usefulness of these new, easily processed electrolytes was asserted in electrochemical tests with lithium intercalation electrodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5: SSCV (50 mV h−1) of solid-state batteries using Li4Ti5O12 as the negative electrode and either LiFePO4 or LiCoO2 as the positive electrode.

Similar content being viewed by others

References

  1. Hammami, A., Raymond, N. & Armand, M. Runaway risk of forming toxic compounds. Nature 424, 635–636 (2003).

    Article  CAS  Google Scholar 

  2. Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  3. Armand, M., Gorecki, W. & Andreani, R. in Second International Meeting on Polymer Electrolytes (ed. Scrosati, B.) 91–97 (Elsevier, London, 1990).

    Google Scholar 

  4. Nishimoto, A., Agehara, K., Furuya, N., Watanabe, T. & Watanabe, M. High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains. Macromolecules 32, 1541–1548 (1999).

    Article  CAS  Google Scholar 

  5. Zheng, Y., Wright, P.V. & Ungar, G. High ambient dc and ac conductivities in solvent-free, low-dimensional polymer electrolyte blends with lithium salts. Electrochim. Acta, 46, 1397–1405 (2001).

    Article  CAS  Google Scholar 

  6. Gadjourova, Z., Andreev, Y.G., Tunstall, D.P. & Bruce, P.G. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520–523 (2001).

    Article  CAS  Google Scholar 

  7. Béranger, S., Fortier, M.-H., Baril, D. & Armand, M. Inducing order in polymers. Solid State Ionics 148, 4437–4441 (2002).

    Article  Google Scholar 

  8. Sherwood, J. (ed.) The Plastically Crystalline State (Wiley, London, 1979).

    Google Scholar 

  9. Cooper, E.I. & Angell, C. Ambient temperature plastic crystal fast ion conductors (PLICFICS). Solid State Ionics 18–19, 570–576 (1986).

    Article  Google Scholar 

  10. Ono, H., Ishimaru, S., Ikeda, R. & Ishida, H. 1H, 2H, 19F, 31P, and 35Cl NMR studies on molecular motions in ionic plastic phases of pyrrolidinium perchlorate and hexafluorophosphate. Bull. Chem. Soc. Jpn 72, 2049–2054 (1999).

    Article  CAS  Google Scholar 

  11. MacFarlane, D., Huang, J. & Forsyth, M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature 402, 792–794 (1999).

    Article  CAS  Google Scholar 

  12. Abu-Lebdeh, Y., Alarco, P.-J. & Armand, M. Conductive organic plastic crystals based on pyrazolium imides. Angew. Chem. Intl Edn 42, 4499–4501 (2003).

    Article  CAS  Google Scholar 

  13. Long, S., MacFarlane, D.R. & Forsyth, M. Fast ion conduction in molecular plastic crystals. Solid State Ionics 161, 105–112 (2003).

    Article  CAS  Google Scholar 

  14. Derollez, P., Lefebvre, J., Descamps, M., Press, W. & Fontaine, H. Structure of succinonitrile in its plastic phase. J. Phys. Condens. Matter 2, 6893–6903 (1990).

    Article  CAS  Google Scholar 

  15. Tanaka, J. & Berg, D. Effect of the dielectric constant of the embedding media on electroluminescent light intensity. J. Electrochem. Soc. 110, 580–582 (1963).

    Article  CAS  Google Scholar 

  16. Lide, D. Handbook of Organic Solvents 7 (CRC, Florida, 1995).

    Google Scholar 

  17. Gutmann, V. The Donor-Acceptor Approach to Molecular Interactions (Plenum, New York, 1978).

    Book  Google Scholar 

  18. Gray, F.M. Polymer Electrolytes (The RSC Materials Monographs, Cambridge, UK, 1997).

    Google Scholar 

  19. Timmermans, E. Plastic crystals: a historical review. J. Phys. Chem. Solids 18, 1–8 (1961).

    Article  CAS  Google Scholar 

  20. Volel, M., Alarco, P.-J., Abu-Lebdeh, Y. & Armand, M. Morphology and nano-mechanics of conducting plastic crystals. Chem. Phys. Chem. (in the press).

  21. Nan, C.-W., Fan, L., Lin, Y. & Cai, Q. Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys. Rev. Lett. 91, 104–108 (2003).

    Article  Google Scholar 

  22. Bhattacharyya, A.J. & Maier, J. Second phase effects on the conductivity of nonaqueous salt solutions: “Soggy sand electrolytes”. Adv. Mater. 16, 811–814 (2004).

    Article  CAS  Google Scholar 

  23. Itoh, T., Miyamura, Y., Ichikawa, Y., Uno, T., Kubo, M. & Yamamoto, O. Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer. J. Power Sources 119–121, 403–408 (2003).

    Article  Google Scholar 

  24. Rey, I., Lassègues, J.C., Grondin, J. & Servant, L. Infrared and Raman study of the PEO-LiTFSI polymer electrolyte. Electrochim. Acta 43, 1505–1510 (1998).

    Article  CAS  Google Scholar 

  25. Bakker, A., Gejji, S., Lindgren, Jan., Hermansson, K. & Probst, M. Contact ion pair formation and ether oxygen coordination in the polymer electrolytes M[N(CF3SO2)2]2PEOn for M = Mg, Ca, Sr and Ba. Polymer 36, 4371–4378 (1995).

    Article  CAS  Google Scholar 

  26. Gorecki, W., Roux, C., Clémancey, M., Armand, M. & Belorizky, E. NMR and conductivity study of polymer electrolytes: P(EO) / Li[N(SO2CnF2n+1)(SO2CmF2m+1) in the imide family. Chem. Phys. Chem. 3, 620–625 (2002).

    Article  CAS  Google Scholar 

  27. Saboungi, M.-L., Price, D.L., Armand, M.B., Howells, W.S. & Mao, G. Structure of liquid PEO-LiTFSI electrolyte. Phys. Rev. Lett. 84, 5536–5539 (2000).

    Article  Google Scholar 

  28. Linert, W., Jameson, R.F. & Taha, A. Donor numbers of anions in solution: the use of solvatochromic Lewis acid-base indicators. J. Chem. Soc. Dalton Trans. 3181–3186 (2002).

  29. Linert, W., Camard, A., Armand, M. & Michot, C. Anions of low Lewis basicity for ionic solid state electrolytes. Coord. Chem. Rev. 226, 137–141 (2002).

    Article  CAS  Google Scholar 

  30. Baril, D., Michot, C. & Armand, M. Electrochemistry of liquids vs. solids: Polymer Electrolytes. Solid State Ionics 94, 35–47 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CNRS funding covered full (M.A.) and partial (P.J.A., Y.A.-L., A.A.) salaries and research expenditures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Armand.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alarco, PJ., Abu-Lebdeh, Y., Abouimrane, A. et al. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nature Mater 3, 476–481 (2004). https://doi.org/10.1038/nmat1158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing