Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Combinatorial solid-state chemistry of inorganic materials

Abstract

Throughout history, scientists and engineers have relied on the slow and serendipitous trial-and-error process for discovering and developing new materials. In contrast, an emerging theme in modern materials science is the notion of intelligent design of materials. Pioneered by the pharmaceutical industry and adapted for the purposes of materials science and engineering, the combinatorial approach represents a watershed in the process of accelerated discovery, development and optimization of materials. To survey large compositional landscapes rapidly, thousands of compositionally varying samples may be synthesized, processed and screened in a single experiment. Recent developments have been aided by innovative rapid characterization tools, and by advanced materials synthesis techniques such as laser molecular beam epitaxy which can be used to perform parallel-processed design and control of materials down to the atomic scale. Here we review the fast-growing field of combinatorial materials science, with an emphasis on inorganic functional materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Materials synthesis as a multistep process.
Figure 2: Increasing complexity and evolution in the combinatorial thin-film technology.
Figure 3: Combinatorial laser molecular beam epitaxy.
Figure 4: Scanning SQUID microscopy.
Figure 5: Dielectric mapping of a HfO2–Y2O3–Al2O3 ternary composition spread obtained by a microwave microscope.
Figure 6: Photograph of a luminescent materials library under irradiation from a multiband emission ultraviolet lamp centred around 254 nm.
Figure 7: Micro-hotplate device array as a platform for combinatorial study of semiconductor films for gas sensing.
Figure 8: Transmission electron microscopy (TEM) of specific sites of interest on combinatorial samples.

Similar content being viewed by others

References

  1. Lebl, M. Parallel personal comments on 'classical' papers in combinatorial chemistry. J. Comb. Chem. 1, 3–24 (1999).

    Article  CAS  Google Scholar 

  2. Takeuchi, I., Newsam, J.M., Wille, L.C., Koinuma, H. & Amis, E.J. (eds) Combinatorial and artificial intelligence methods in materials science. Mater. Res. Soc. Symp. Proc. 700 (2002).

  3. Xiang, X.-D. & Takeuchi, I. (eds) Combinatorial Materials Synthesis (Dekker, New York, 2003).

    Book  Google Scholar 

  4. Takeuchi, I., van Dover, R.B. & Koinuma, H. Combinatorial synthesis and evaluation of functional inorganic materials using thin-film techniques. Mater. Res. Soc. Bull. 27, 301–308 (2002).

    Article  CAS  Google Scholar 

  5. Jandeleit, B., Turner, H.W., Uno, T., van der Beek, J.A.M. & Weinberg, W.H. CATTECH 2, 101 (1998).

    CAS  Google Scholar 

  6. Senken, S., Krantz, K., Ozturk, S., Zengin, V. & Onal, I. High-throughput testing of heterogeneous catalyst libraries using array microreactors and mass spectrometry. Angew. Chem. Int. Edn 38, 2794–2799 (1999).

    Article  Google Scholar 

  7. Special issue on combinatorial research and high-throughput experimentation in polymer and materials research. Macromol. Rapid Commun. 24, (2003).

  8. Xiang, X.-D. Combinatorial materials synthesis and screening: an integrated materials chip approach to discovery and optimization of functional materials. Annu. Rev. Mater. Sci. 29, 149–171 (1999).

    Article  CAS  Google Scholar 

  9. Matsumoto, Y. et al. Combinatorial investigation of spintronic materials. Mater. Res. Soc. Bull. 28, 734–739 (2003).

    Article  CAS  Google Scholar 

  10. Kennedy, K., Stefansky, T., Davy, G., Zacky, V.F. & Parker, E.R. Rapid mapping for determining ternary-alloy phase diagrams. J. Appl. Phys. 36, 3808–3810 (1965).

    Article  CAS  Google Scholar 

  11. Miller, N.C. & Shirn, G.A. Co-sputtered Au–SiO2 cermet films. Appl. Phys. Lett. 10, 86–88 (1967).

    Article  CAS  Google Scholar 

  12. Hanak, J.J., Gittleman, J.I., Pellicane, J.P. & Bozowski, S. The effect of grain size on the superconducting transition temperature of the transition metals. Phys. Lett. 30A, 201–202 (1969).

    Article  Google Scholar 

  13. Hanak, J.J. The 'multi-sample concept' in materials research: synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 5, 964–971 (1970).

    Article  CAS  Google Scholar 

  14. Xiang, X.-D. et al. A combinatorial approach to materials discovery. Science 268, 1738–1740 (1995).

    Article  CAS  Google Scholar 

  15. Koinuma, H. Quantum functional oxides and combinatorial chemistry. Solid State Ionics 108, 1–7 (1998).

    Article  CAS  Google Scholar 

  16. Koinuma, H., Aiyer, N.H. & Matsumoto, Y. Combinatorial solid state materials science and technology. Sci. Technol. Adv. Mater. 1, 1–10 (2000).

    Article  CAS  Google Scholar 

  17. Lippmaa, M., Kawasaki, M. & Koinuma, H. in Combinatorial Materials Synthesis (eds Xiang, X.-D. & Takeuchi, I.) Ch. 5 (Dekker, New York, 2003).

    Google Scholar 

  18. Wei, T., Xiang, X.-D., Wallace-Freedman, W.G. & Schultz, P.G. Scanning tip microwave near-field microscope. Appl. Phys. Lett. 68, 3506–3508 (1996).

    Article  CAS  Google Scholar 

  19. Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).

    Article  CAS  Google Scholar 

  20. Merrifield, R.B. Solid phase peptide synthesis. IV. The synthesis of methionyl-lysyl-bradykinin. J. Org. Chem. 29, 3100–3102 (1964).

    Article  CAS  Google Scholar 

  21. Sato, K., Hibara, A., Tokeshi, M., Hisamoto, H. & Kitamori, T. Integration of chemical and biochemical analysis systems into a glass microchip. Anal. Sci. 19, 15–22 (2003).

    Article  CAS  Google Scholar 

  22. Hanak, J.J. in Combinatorial Materials Synthesis (eds Xiang, X.-D. & Takeuchi, I, eds) 7–34 (Dekker, New York, 2003).

    Google Scholar 

  23. Koinuma, H., Nagata, H., Tsukahara, T., Gonda, S. & Yoshimoto, M. in Ext. Abstracts 22nd Conf. Solid State Devices and Materials (SSDM 90) 933–936 (Japanese Sociecty of Applied Physics, Tokyo, 1990).

    Google Scholar 

  24. Terashima, T. et al. Reflection high-energy electron diffraction oscillations during epitaxial growth of high-temperature superconducting oxides. Phys. Rev. Lett. 65, 2684–2687 (1990).

    Article  CAS  Google Scholar 

  25. Kawasaki, M. et al. Atomic control of the SrTiO3 crystal surface. Science 266, 1540–1542 (1994).

    Article  CAS  Google Scholar 

  26. Ohnishi, T. et al. Parallel integration and characterization of nanoscaled epitaxial lattices by concurrent molecular layer epitaxy and diffractometry. Appl. Phys. Lett. 79, 1282–1284 (2001).

    Article  Google Scholar 

  27. Koida, T. et al. Temperature-gradient epitaxy under in situ growth mode diagnostics by scanning reflection high-energy electron diffraction. Appl. Phys. Lett. 80, 565–567 (2002).

    Article  CAS  Google Scholar 

  28. Minami, H. et al. Rapid synthesis and scanning probe analysis of BaxSr1–xTiO3 composition spread films on a temperature gradient Si(100) substrate. Jpn J. Appl. Phys. 41, L149–L151 (2002).

    Article  CAS  Google Scholar 

  29. Kubota, H. et al. Combinatorial synthesis and luminescent characteristics of RECa4O(BO3)3 epitaxial thin films. Appl. Surf. Sci. 223, 241–244 (2004).

    Article  CAS  Google Scholar 

  30. Tamura, K. et al. Donor-acceptor luminescence in nitrogen-doped ScAlMgO4 (0001) substrates. Solid State Commun. 127, 265–269 (2003).

    Article  CAS  Google Scholar 

  31. Fukumura, T. et al. Rapid construction of a phase diagram of doped Mott insulators with a composition-spread approach. Appl. Phys. Lett. 77, 3426–3428 (2000).

    Article  CAS  Google Scholar 

  32. Hasegawa, K. et al. Amorphous stability of HfO2 based ternary and binary composition spread oxide films as alternative gate dielectrics. Appl. Surf. Sci. 223, 229–232 (2004).

    Article  CAS  Google Scholar 

  33. Takahashi, R. et al. Design of combinatorial shadow masks for complete ternary-phase diagramming of solid state materials. J. Comb. Chem. 6, 50–53 (2004).

    Article  CAS  Google Scholar 

  34. Matsumoto, Y. et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–856 (2001).

    Article  CAS  Google Scholar 

  35. Takeuchi, I. et al. Identification of novel compositions of ferromagnetic shape memory alloys using composition spreads. Nature Mater. 2, 180–184 (2003).

    Article  CAS  Google Scholar 

  36. Chang, H., Takeuchi, I. & Xiang, X.-D. A low-loss composition region identified from a thin-film composition spread of (Ba1–xySrxCay)TiO3 . Appl. Phys. Lett. 74, 1165–1167 (1999).

    Article  CAS  Google Scholar 

  37. Chang, K.-S. et al. Multimode quantitative microwave microscopy of in situ grown epitaxial Ba1–xSrxTiO3 composition spreads. Appl. Phys. Lett. 79, 4411–4413 (2001).

    Article  CAS  Google Scholar 

  38. Wang, J. et al. Identification of a blue photoluminescent composite material from a combinatorial library. Science 279, 1712–1714 (1998).

    Article  CAS  Google Scholar 

  39. Semancik, S. & Cavicchi, R.E. Kinetically controlled chemical sensing using micromachined structures. Acc. Chem. Res. 31, 279–287 (1998).

    Article  CAS  Google Scholar 

  40. Semancik, S. in Combinatorial Materials Synthesis (eds Xiang, X.-D. & Takeuchi, I.) Ch. 9 (Dekker, New York, 2003).

    Google Scholar 

  41. Potyrailo, R.A. & Morris, W.G. Multifunctional sensor system for high-throughput characterization of combinatorially developed materials. Rev. Sci. Instrum. 75, 2177–2186 (2004).

    Article  CAS  Google Scholar 

  42. Potyrailo, R.A. & Morris, W.G. Parallel high-throughput microanalysis of materials using microfabricated full bridge device arrays. Appl. Phys. Lett. 84, 634–636 (2004).

    Article  CAS  Google Scholar 

  43. Ohtani, M. et al. Concurrent X-ray diffractometer for high throughput structural diagnostics of epitaxial thin films. Appl. Phys. Lett. 79, 3594–3596 (2001).

    Article  CAS  Google Scholar 

  44. Chang, W. in Combinatorial Materials Synthesis (eds Xiang, X.-D. & Takeuchi, I.) Ch. 10 (Dekker, New York, 2003).

    Google Scholar 

  45. Issacs, E.D. et al. Synchrotron X-ray microbeam diagnostics of combinatorial synthesis. Appl. Phys. Lett. 73, 1820–1822 (1998).

    Article  Google Scholar 

  46. Chikyow, T. et al. A combinatorial approach in oxide/semiconductor interface research for future electronic devices. Appl. Surf. Sci. 189, 284–291 (2002).

    Article  CAS  Google Scholar 

  47. van Dover, R.B., Schneemeyer, L.F. & Fleming, R.M. Discovery of a useful thin-film dielectric using a composition-spread approach. Nature 392, 162–164 (1998).

    Article  CAS  Google Scholar 

  48. van Dover, R.B. & Schneemeyer, L.F. Deposition of uniform Zr–Sn–Ti–O films by on-axis reactive sputtering. IEEE Electron Device Lett. 19, 329–331 (1998).

    Article  CAS  Google Scholar 

  49. Chang, H. et al. Combinatorial synthesis and high throughput evaluation of ferroelectric/dielectric thin film libraries for microwave applications. Appl. Phys. Lett. 72, 2185–2187 (1998).

    Article  CAS  Google Scholar 

  50. Takeuchi, I. et al. Combinatorial synthesis and evaluation of epitaxial ferroelectric device libraries. Appl. Phys. Lett. 73, 894–896 (1998).

    Article  CAS  Google Scholar 

  51. Chang, W. et al. The effect of (Ba,Sr) and (Mn,Fe,W) dopants of the microwave properties of (Ba,Sr)TiO3-based thin films. Mater. Res. Soc. Symp. Proc. 541, 699–704 (1999).

    Article  CAS  Google Scholar 

  52. Chambers, S.A. & Farrow, R.F.C. New possibilities for ferromagnetic semiconductors. Mater. Res. Soc. Bull. 28, 729–733 (2003).

    Article  CAS  Google Scholar 

  53. Tsui, F. et al. Novel germanium-based magnetic semiconductors. Phys. Rev. Lett. 91. 177203–1–4 (2003).

    Article  Google Scholar 

  54. Shinde, S.R. et al. Co-occurrence of superparamagnetism and anomalous Hall effect in high reduced cobalt doped rutile TiO2–δ films. Phys. Rev. Lett. (in the press).

  55. Sun, X.-D. & Xiang, X.-D. New phosphor (Gd2–xZnx)O3:Eu3+ with high luminescent efficiency and superior chromaticity. Appl. Phys. Lett. 72, 525–527 (1998).

    Article  CAS  Google Scholar 

  56. Danielson, E. et al. A rare-earth phosphor containing one-dimensional chains through combinatorial methods. Science 279, 837–839 (1998).

    Article  CAS  Google Scholar 

  57. Takeuchi, I. et al. Monolithic multichannel UV detector arrays and continuous phase evolution in MgxZn1–xO compositions spreads. J. Appl. Phys. 94, 7336–7340 (2003).

    Article  CAS  Google Scholar 

  58. Yoo, Y.K. et al. Intermetallics 9, 541–545 (2001).

    Article  CAS  Google Scholar 

  59. Itaka, K. et al. High-speed evaluation of thermoelectric materials using multi-channel measurement system. J. Thermal Anal. Calorimetry 69, 1051–1058 (2002).

    Article  CAS  Google Scholar 

  60. Sun, T.X. & Jabbour, G.E. Combinatorial screening and optimization of luminescent materials and organic light-emitting devices. Mater. Res. Soc. Bull. 27, 309–315 (2002).

    Article  CAS  Google Scholar 

  61. Yanase, I., Ohtaki, T. & Watanabe, M. Combinatorial study on nano-particle mixture prepared by robot system. Appl. Surf. Sci. 189, 292–299 (2002).

    Article  CAS  Google Scholar 

  62. Kajiyama, A. et al. Synthesis and electrochemical properties of lithium chromium titanium oxide with Ramsdellite structure. J. Electrochem. Soc. 150, A157–A160 (2003).

    Article  CAS  Google Scholar 

  63. Konishi, T. et al. Investigation of glass formation and color properties in the P2O5–TeO2–ZnO system. J. Non-Cryst. Solids 324, 58–66 (2003).

    Article  CAS  Google Scholar 

  64. Meredith, J.C., Karim, A. & Amis, E.J. Combinatorial methods for investigations in polymer materials science. Mater. Res. Soc. Bull. 27, 330–336 (2002).

    Article  CAS  Google Scholar 

  65. Special issue on combinatorial materials research and high-throughput experimentation in polymer and materials research. Macromol. Rapid Commun. 25, (2004).

  66. Smotkin, E.S. & Diaz-Morales, R.R. New electrocatalysts by combinatorial methods. Annu. Rev. Mater. Res. 33, 557–579 (2003).

    Article  CAS  Google Scholar 

  67. Senkan, S. Combinatorial heterogeneous catalysis: a new path in an old field. Angew. Chem. Int. Edn 40, 312–329 (2001).

    Article  CAS  Google Scholar 

  68. Hendershot, R.J. et al. A novel reactor system for high throughput catalyst testing under realistic conditions. Appl. Catal. A 254, 107–120 (2003).

    Article  CAS  Google Scholar 

  69. Rajan, K. in Combinatorial Materials Synthesis (eds Xiang, X.-D. & Takeuchi, I.) Ch. 13 (Dekker, New York, 2003).

    Google Scholar 

  70. Suh, C. & Rajan, K. Combinatorial design of semiconductor chemistry for bandgap engineering: 'virtual' combinatorial experimentation. Appl. Surf. Sci. 223, 148–158 (2004).

    Article  CAS  Google Scholar 

  71. Huxtable, S., Cahill, D.G., Fauconnier, V., White, J.O. & Zhao, J.-C. Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nature Mater. 3, 298–301 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to many colleagues for collaboration and discussions over the years. We particularly thank the following colleagues for key contributions to some of this work (in alphabetical order): M. A. Aronova, L. A. Bendersky, H. Chang, K.-S. Chang, T. Chikyow, O. O. Famodu, T. Fukumura, C. Gao, T. Hasegawa, S. Inoue, K. Itaka, M. Kawasaki, L. Knauss, M. Lippmaa, S. E. Lofland, T. Makino, Y. Matsumoto, A. Miyamoto, M. Murakami, T. Ohnishi, A. Orozco, G. W. Rubloff, P. G. Schultz, Y. Segawa, S. Todoroki, R. D. Vispute, M. Watanabe, F. C. Wellstood, X.-D. Xiang, T. Yamamoto and Y. Yoo. H.K. acknowledges support from the CREST-JST 'Combinatorial molecular layer epitaxy' project (1996–2001) and the COMET project. I.T. acknowledges support from ONR N000140110761, N000140410085, NSF DMR0094265 (CAREER), NSF DMR 0231291 and NSF MRSEC DMR 00-80008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Takeuchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koinuma, H., Takeuchi, I. Combinatorial solid-state chemistry of inorganic materials. Nature Mater 3, 429–438 (2004). https://doi.org/10.1038/nmat1157

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing