Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Investigation of twin-wall structure at the nanometre scale using atomic force microscopy

Abstract

The structure of twin walls and their interaction with defects has important implications for the behaviour of a variety of materials including ferroelectric, ferroelastic, co-elastic and superconducting crystals. Here, we present a method for investigating the structure of twin walls with nanometre-scale resolution. In this method, the surface topography measured using atomic force microscopy is compared with candidate displacement fields, and this allows for the determination of the twin-wall thickness and other structural features. Moreover, analysis of both complete area images and individual line-scan profiles provides essential information about local mechanisms of twin-wall broadening, which cannot be obtained by existing experimental methods. The method is demonstrated in the ferroelectric material PbTiO3, and it is shown that the accumulation of point defects is responsible for significant broadening of the twin walls. Such defects are of interest because they contribute to the twin-wall kinetics and hysteresis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical c/a/c domain pattern (three domains separated by two twin walls) and the corresponding displacement field.
Figure 2
Figure 3: The average error per point of the simulation in Fig. 2b calculated using equation (3).
Figure 4: Histograms of the distribution of twin-wall half thickness (w) values that were fitted to individual scan profiles.
Figure 5

Similar content being viewed by others

References

  1. Wadhawan, W.K. Introduction to Ferroic Materials (Gordon & Breach, Amsterdam, 2000).

    Google Scholar 

  2. Xu, Y. Ferroelectric Materials and Their Applications (North-Holland, Amsterdam, 1991).

    Google Scholar 

  3. Randall, C.A., Kim, N., Kucera, J.P., Cao, W. & Shrout, T.R. Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998).

    Article  CAS  Google Scholar 

  4. Erhart, J. & Cao, W. Effective material properties in twinned ferroelectric crystals. J. Appl. Phys. 86, 1073–1081 (1999).

    Article  CAS  Google Scholar 

  5. Emelyanov, A.Y., Pertsev, N.A. & Salje, E.K.H. Effect of finite domain-wall width on the domain structures of epitaxial ferroelectric and ferroelastic thin films. J. Appl. Phys. 89, 1355–1366 (2001).

    Article  CAS  Google Scholar 

  6. Ahluwalia, R. & Cao, W. Size dependence of domain patterns in a constrained ferroelectric system. J. Appl. Phys. 89, 8105–8109 (2001).

    Article  CAS  Google Scholar 

  7. Devonshire, A.F. Theory of barium titanate. 1. Philos. Mag. 40, 1040–1063 (1949).

    Article  CAS  Google Scholar 

  8. Fatuzzo, E. & Merz, W.J. Ferroelectricity (North-Holland, Amsterdam, 1967).

    Google Scholar 

  9. Salje, E.K.H. Phase Transition in Ferroelastic and Co-Elastic Crystals (Cambridge Univ. Press, Cambridge, 1990).

    Book  Google Scholar 

  10. Huan, M.J., Furman, E., Jang, S.J., McKinstry, H.A. & Cross, L.E. Thermodynamic theory of PbTiO3 . J. Appl. Phys. 62, 3331–3338 (1987).

    Article  Google Scholar 

  11. Cao, W. & Cross, L.E. Theory of tetragonal twin structures in perovskites with a first-order phase transition. Phys. Rev. B 44, 5–12 (1991).

    Article  CAS  Google Scholar 

  12. Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B 65, 104111 (2002).

    Article  Google Scholar 

  13. Chrosch, J. & Salje, E.K.H. Temperature dependence of the domain wall width in LaAlO3 . J. Appl. Phys. 85, 722–727 (1999).

    Article  CAS  Google Scholar 

  14. Wittborn, J. et al. Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy. Appl. Phys. Lett. 80, 1622–1624 (2002).

    Article  CAS  Google Scholar 

  15. Stemeer, S., Streiffer, S.K., Ernst, F. & Ruhle, M. Atomistic structure of 90° domain walls in ferroelectric PbTiO3 thin films. Philos. Mag. A 71, 713–724 (1995).

    Article  Google Scholar 

  16. Hytch, M.J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  CAS  Google Scholar 

  17. Foeth, M., Sfera, A., Stadelmann, P. & Buffat, P.A. A comparison of HREM and weak beam transmission electron microscopy for the quantitative measurement of the thickness of ferroelectric domain walls. J. Electron Microsc. 48, 717–723 (1999).

    Article  CAS  Google Scholar 

  18. Calleja, M., Dove, M.T. & Salje, E.K.H. Trapping of oxygen vacancies on twin walls of CaTiO3: a computer simulation study. J. Phys. Condens. Matter 15, 2301–2307 (2003).

    Article  CAS  Google Scholar 

  19. Cheng, B.L., Gabbay, M. & Fantozzi, G. Effect of oxygen vacancies on the motion of domain walls in BaTiO3 ceramics. Defect Diffus. Forum 206, 143–146 (2002).

    Article  Google Scholar 

  20. Harrison, R.J., Redfern, S.A.T. & Street, J. The effect of transformation twins on the seismic-frequency mechanical properties of polycrystalline Ca1-xSrxTiO3 perovskite. Am. Mineral. 88, 574–582 (2003).

    Article  CAS  Google Scholar 

  21. Harrison, R.J. & Redfern, S.A.T. The influence of transformation twins on the seismic-frequency elastic and anelastic properties of perovskite: dynamical mechanical analysis of single crystal LaAlO3 . Phys. Earth Planet. Int. 134, 253–272 (2002).

    Article  CAS  Google Scholar 

  22. Wang, C., Fang, Q.F., Shi, Y. & Zhu, Z.G. Internal friction study on oxygen vacancies and domain walls in Pb(Zr,Ti)O3 ceramics. Mater. Res. Bull. 36, 2657–2665 (2001).

    Article  CAS  Google Scholar 

  23. Zhang, X., Hashimoto, T. & Joy, D.C. Electron holographic study of ferroelectric domain walls. Appl. Phys. Lett. 60, 784–786 (1992).

    Article  CAS  Google Scholar 

  24. Tsai, F., Khiznichenko, V. & Cowley, J.M. High-resolution electron microscopy of 90° ferroelectric domain boundaries in BaTiO3 and Pb(Zr0.52Ti0.48)O3 . Ultramicroscopy 45, 55–63 (1992).

    Article  CAS  Google Scholar 

  25. Floquet, N. et al. Ferroelectric domain walls in BaTiO3: fingerprints in XRPD diagrams and quantitative HRTEM image analysis. J. Phys. III 7, 1105–1128 (1997).

    CAS  Google Scholar 

  26. Floquet, N. & Valot, C. Ferroelectric domain walls in BaTiO3: structural wall model interpreting fingerprints in XRPD diagrams. Ferroelectrics 234, 107–122 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Army Research Office (DAAD-19-99-1-0319) through a Department of Defense Multidisciplinary University Research Initiative. We thank W. G. Knauss for his generous help with the AFM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron Shilo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shilo, D., Ravichandran, G. & Bhattacharya, K. Investigation of twin-wall structure at the nanometre scale using atomic force microscopy. Nature Mater 3, 453–457 (2004). https://doi.org/10.1038/nmat1151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing