Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-bonded cubic form of nitrogen

Abstract

Nitrogen usually consists of molecules where two atoms are strongly triple-bonded. Here, we report on an allotropic form of nitrogen where all atoms are connected with single covalent bonds, similar to carbon atoms in diamond. The compound was synthesized directly from molecular nitrogen at temperatures above 2,000 K and pressures above 110 GPa using a laser-heated diamond cell. From X-ray and Raman scattering we have identified this as the long-sought-after polymeric nitrogen with the theoretically predicted cubic gauche structure (cg-N). This cubic phase has not been observed previously in any element. The phase is a stiff substance with bulk modulus ≥300 GPa, characteristic of strong covalent solids. The polymeric nitrogen is metastable, and contrasts with previously reported amorphous non-molecular nitrogen, which is most likely a mixture of small clusters of non-molecular phases. The cg-N represents a new class of single-bonded nitrogen materials with unique properties such as energy capacity: more than five times that of the most powerfully energetic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray diffraction measurements of nitrogen after heating to 2,600 K at 140 GPa.
Figure 2: The X-ray diffraction spectrum taken at room temperature from the centre of the nitrogen sample heated to 2,600 K at 115 GPa (dashed blue line).
Figure 3: cg-N structure.
Figure 4: Raman scattering from cg-N.

Similar content being viewed by others

References

  1. Greenwood, N.N. & Earnshaw, A. Chemistry of the Elements (Pergamon, Oxford, 1984).

    Google Scholar 

  2. McMahan, A.K. & LeSar, R. Pressure dissociation of solid nitrogen under 1 Mbar. Phys. Rev. Lett. 54, 1929–1932 (1985).

    Article  CAS  Google Scholar 

  3. Mailhiot, C., Yang, L.H. & McMahan, A.K. Polymeric nitrogen. Phys. Rev. B 46, 14419–14435 (1992).

    Article  CAS  Google Scholar 

  4. Martin, R.M. & Needs, R. Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures. Phys. Rev. B 34, 5082–5092 (1986).

    Article  CAS  Google Scholar 

  5. Barbee III, T.W. Metastability of atomic phases of nitrogen. Phys. Rev. B 48, 9327–9330 (1993).

    Article  CAS  Google Scholar 

  6. Mitas, L. & Martin, R.M. Quantum Monte Carlo of nitrogen: atom, dimer, atomic, and molecular solids. Phys. Rev. Lett. 72, 2438–2441 (1994).

    Article  CAS  Google Scholar 

  7. Alemany, M.M.G. & Martins, J.L. Density-functional study of nonmolecular phases of nitrogen: Metastable phase at low pressure. Phys. Rev. B 68, 024110 (2003).

    Article  Google Scholar 

  8. Yakub, E.S. Diatomic fluids at high pressures and temperatures: a non-empirical approach. Physica B 265, 31–38 (1999).

    Article  CAS  Google Scholar 

  9. Mattson, W.D. The Complex Behavior of Nitrogen Under Pressure: Ab Initio Simulation of the Properties of Sructure and Shock Waves p. 108, Thesis, Univ. Illinois at Urbana-Champaign (2003).

    Google Scholar 

  10. Eremets, M.I., Hemley, R.J., Mao, H.K. & Gregoryanz, E. Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability. Nature 411, 170–174 (2001).

    Article  CAS  Google Scholar 

  11. Goncharov, A.F., Gregoryanz, E., Mao, H.K., Liu, Z. & Hemley, R.J. Optical evidence for nonmolecular phase of nitrogen above 150 GPa. Phys. Rev. Lett. 85, 1262–1265 (2000).

    Article  CAS  Google Scholar 

  12. Gregoryanz, E., Goncharov, A.F., Hemley, R.J. & Mao, H.K. High-pressure amorphous nitrogen. Phys. Rev. B 64, 052103 (2001).

    Article  Google Scholar 

  13. Gregoryanz, E. et al. Raman, infrared, and x-ray evidence for new phases of nitrogen at high pressures and temperatures. Phys. Rev. B 66, 224108 (2002).

    Article  Google Scholar 

  14. Boehler, R., von Bargen, N. & Chopelas, A. Melting, thermal expansion, and phase transitions of iron at high pressures. J. Geophys. Res. B 95, 21731–21736 (1990).

    Article  Google Scholar 

  15. Eremets, M.I., Struzhkin, V.V., Mao, H.K. & Hemley, R.J. Superconductivity in boron. Science 293, 272–274 (2001).

    Article  CAS  Google Scholar 

  16. Jephcoat, A.P., Hemley, R.J., Mao, H.K. & Cox, D.E. Pressure-induced structural transitions in solid nitrogen. Bull. Am. Phys. Soc. 33, 522 (1988).

    Google Scholar 

  17. Olijnyk, H. High pressure x-ray diffraction studies on solid N2 up to 43.9 GPa. J. Chem. Phys. 93, 8968–8972 (1990).

    Article  CAS  Google Scholar 

  18. Hanfland, M., Lorenzen, M., Wassilew-Reul, C. & Zontone, F. Structures of molecular nitrogen at high pressure. Rev. High Press. Sci. Technol. 7, 787–789 (1998).

    Article  CAS  Google Scholar 

  19. Sanz, D.N., Loubeyre, P. & Mezouar, M. Equation of state and pressure induced amorphization of β-boron from X-ray measurements up to 100 GPa. Phys. Rev. Lett. 89, 245501 (2002).

    Article  Google Scholar 

  20. Yoo, C.S., Akella, J., Cynn, H. & Nicol, M. Direct elementary reactions of boron and nitrogen at high pressures and temperatures. Phys. Rev. B 56, 140–146 (1997).

    Article  CAS  Google Scholar 

  21. Mao, H.K., Xu, J. & Bell, P.M. Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986).

    Article  CAS  Google Scholar 

  22. Hanfland, M. & Syassen, K. A Raman study of diamond anvils under stress. J. Appl. Phys. 57, 2752–2756 (1984).

    Article  Google Scholar 

  23. Boppart, H., von Straaten, J. & Silvera, I. Raman scattering of diamond at high pressures. Phys. Rev. B 32, 1423–1425 (1985).

    Article  CAS  Google Scholar 

  24. Eremets, M.I. Megabar high-pressure cells for Raman measurements. J. Raman Spectrosc. 34, 515–518 (2003).

    Article  CAS  Google Scholar 

  25. Eremets, M.I. High Pressure Experimental Methods (Oxford Univ. Press, Oxford, 1996).

    Google Scholar 

  26. Knittle, E., Wentzcovitch, R.M., Jeanloz, R. & Cohen, M.L. Experimental and theoretical equation of state of cubic boron nitride. Nature 337, 349–352 (1989).

    Article  CAS  Google Scholar 

  27. Gregoryanz, E. et al. Synthesis and characterization of a binary noble metal nitride. Nature Mater. 3, 294–297 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to M. Hanfland for his help with the X-ray measurements at the ID9 beam line of the ESRF synchrotron (Grenoble) and N. R. Serebryanaya for valuable discussions. I.T. and A.G. appreciate support of DFG grant 436 RUS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail I. Eremets.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eremets, M., Gavriliuk, A., Trojan, I. et al. Single-bonded cubic form of nitrogen. Nature Mater 3, 558–563 (2004). https://doi.org/10.1038/nmat1146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing