Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tailoring ferromagnetic chalcopyrites


If magnetic semiconductors are ever to find wide application in real spintronic devices, their magnetic and electronic properties will require tailoring in much the same way that bandgaps are engineered in conventional semiconductors. Unfortunately, no systematic understanding yet exists of how, or even whether, properties such as Curie temperatures and bandgaps are related in magnetic semiconductors. Here we explore theoretically these and other relationships within 64 members of a single materials class, the Mn-doped II-IV-V2 chalcopyrites (where II, IV and V represent elements from groups II, IV and V, respectively); three of these compounds are already known experimentally to be ferromagnetic semiconductors. Our first-principles results reveal a variation of magnetic properties across different materials that cannot be explained by either of the two dominant models of ferromagnetism in semiconductors. On the basis of our results for structural, electronic and magnetic properties, we identify a small number of new stable chalcopyrites with excellent prospects for ferromagnetism.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Theoretical bandgap versus theoretical lattice constant for the II-IV-V2 chalcopyrites considered here.
Figure 2: Theoretical enthalpy of formation versus theoretical lattice constant for II-IV-V2 chalcopyrites.
Figure 3: Theoretical impurity formation energy of substitutional Mn versus theoretical lattice constant of host chalcopyrite.
Figure 4: Theoretical spin coupling between MnIV versus theoretical relative impurity formation energy of MnIV, ΔE.


  1. Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).

    Article  CAS  Google Scholar 

  2. Maekawa, S. & Shinjo, T. (eds) Spin Dependent Transport in Magnetic Nanostructures (Taylor and Francis, New York, 2002).

    Google Scholar 

  3. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  4. Dietl, T. Functional ferromagnetics. Nature Mater. 2, 646–648 (2003).

    Article  CAS  Google Scholar 

  5. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

    Article  CAS  Google Scholar 

  6. König, J., Lin, H.-H. & MacDonald, A.H. Theory of diluted magnetic semiconductor ferromagnetism. Phys. Rev. Lett. 84, 5628–5631 (2000).

    Article  Google Scholar 

  7. Chattopadhyay, A., Das Sarma, S. & Millis, A.J. Transition temperature of ferromagnetic semiconductors: A dynamical mean field study. Phys. Rev. Lett. 87, 227202 (2001).

    Article  CAS  Google Scholar 

  8. Nagaev, E.L. Colossal Magnetoresistance and Phase Separation in Magnetic Semiconductors (Imperial College Press, London, 2002).

    Book  Google Scholar 

  9. Medvedkin, G.A., Ishibashi, T., Hayata, T.N., Hasegawa, Y. & Sato, K. Room temperature ferromagnetism in novel diluted magnetic semiconductor Cd1-xMnxGeP2 . Jpn. J. Appl. Phys. 2 39, L949–L951 (2000).

    Article  CAS  Google Scholar 

  10. Medvedkin, G.A. et al. New magnetic materials in ZnGeP2Mn chalcopyrite system. J. Cryst. Growth 236, 609–612 (2002).

    Article  CAS  Google Scholar 

  11. Cho, S. et al. Room-temperature ferromagnetism in Zn1-xMnxGeP2 semiconductors. Phys. Rev. Lett. 88, 257203 (2002).

    Article  Google Scholar 

  12. Choi, S. et al. Room-temperature ferromagnetism in chalcopyrite Mn-doped ZnSnAs2 single crystals. Solid State Commun. 122, 165–167 (2002).

    Article  CAS  Google Scholar 

  13. Perdew, J.P. et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

  14. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  15. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  16. Mahadevan, P. & Zunger, A. Room-temperature ferromagnetism in Mn-doped semiconducting CdGeP2 . Phys. Rev. Lett. 88, 047205 (2002).

    Article  Google Scholar 

  17. Continenza, A. et al. Structural and electronic properties of narrow-gap ABC2 chalcopyrite semiconductors. Phys. Rev. B 46, 10070–10077 (1992).

    Article  CAS  Google Scholar 

  18. Zhang, S.B. The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: A review. J. Phys. Condens. Matter 14, R881–R903 (2002).

    Article  CAS  Google Scholar 

  19. Erwin, S.C. & Hellberg, C.S. Predicted absence of ferromagnetism in manganese-doped diamond. Phys. Rev. B 68, 245206 (2003).

    Article  Google Scholar 

  20. Kacman, P. Spin interactions in diluted magnetic semiconductors and magnetic semiconductor structures. Semicond. Sci. Technol. 16, R25–R39 (2001).

    Article  CAS  Google Scholar 

  21. Van de Walle, C.G., Limpijumnong, S. & Neugebauer, J. First-principles studies of beryllium doping of GaN. Phys. Rev. B 63, 245205 (2001).

    Article  Google Scholar 

  22. Zhao, Y.-J. & Zunger, A. Site preference for Mn substitution in spintronic CuMIIIX2VI chalcopyrite semiconductors. Phys. Rev. B 69, 075208 (2004).

    Article  Google Scholar 

  23. Picozzi, S., Zhao, Y.-J., Freeman, A.J. & Delley, B. Mn-doped CuGaS2 chalcopyrites: An ab initio study of ferromagnetic semiconductors. Phys. Rev. B 66, 205206 (2002).

    Article  Google Scholar 

  24. Dietl, T., Ohno, H. & Matsukura, F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys. Rev. B 63, 195205 (2001).

    Article  Google Scholar 

  25. Pearton, S.J. et al. Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 93, 1–13 (2003).

    Article  CAS  Google Scholar 

Download references


We thank G. A. Medvedkin for discussions. Computations were performed at the DoD Major Shared Resource Center at ASC. I.Ž. acknowledges financial support from the National Research Council. This work was supported by ONR and the DARPA SpinS program.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Steven C. Erwin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 71 kb)

Supplementary Information, Fig. S3

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Erwin, S., Žutić, I. Tailoring ferromagnetic chalcopyrites. Nature Mater 3, 410–414 (2004).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing