Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of a high-pressure/high-temperature phase of alumina by in situ X-ray diffraction

Abstract

Alumina (α-Al2O3) has been widely used as a pressure calibrant in static high-pressure experiments1,2,3,4 and as a window material in dynamic shock-wave experiments5,6,7,8,9,10,11,12,13,14; it is also a model material in ceramic science. So understanding its high-pressure stability and physical properties is crucial for interpreting such experimental data, and for testing theoretical calculations15,16,17,18,19,20,21. Here we report an in situ X-ray diffraction study of alumina (doped with Cr3+) up to 136 GPa and 2,350 K. We observe a phase transformation that occurs above 96 GPa and at high temperatures. Rietveld full-profile refinements show that the high-pressure phase has the Rh2O3 (II) (Pbcn) structure, consistent with theoretical predictions22. This phase is structurally related to corundum, but the AlO6 polyhedra are highly distorted, with the interatomic bond lengths ranging from 1.690 to 1.847 Å at 113 GPa. Ruby luminescence spectra from Cr3+ impurities within the quenched samples under ambient conditions show significant red shifts and broadening, consistent with the different local environments of chromium atoms in the high-pressure structure inferred from diffraction. Our results suggest that the ruby pressure scale needs to be re-examined in the high-pressure phase, and that shock-wave experiments using sapphire windows need to be re-evaluated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In situ X-ray diffraction study of Al2O3 under high pressures and high temperatures.
Figure 2: Typical Rietveld full-profile refinement, performed using the GSAS program28, of the X-ray diffraction pattern collected at 113 GPa and 300 K after laser heating.
Figure 3: Interatomic bond lengths (Al–Al, Al–O and O–O bonds) of Al2O3 at 113 GPa and 300 K in the corundum, Rh2O3 (II), and orthorhombic perovskite structure model (Table 1).
Figure 4: Ruby luminescence peaks measured under ambient conditions.

Similar content being viewed by others

References

  1. Mao, H.K., Bell, P.M., Shaner, J.W. & Steinberg, D.J. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. J. Appl. Phys. 49, 3276–3283 (1978).

    Article  CAS  Google Scholar 

  2. Xu, J., Mao, H.K. & Bell, P.M. High pressure ruby and diamond fluorescence: Observations at 0.21 to 0.55 terapascal. Science 232, 1404–1406 (1986).

    Article  CAS  Google Scholar 

  3. Jephcoat, A.P., Hemley, R.J. & Mao, H.K. X-ray diffraction of Cr3+: Al2O3 to 175 GPa. Physica B 150, 115–121 (1988).

    Article  CAS  Google Scholar 

  4. Funamori, N. & Jeanloz, R. High-pressure transformation of Al2O3 . Science 278, 1109–1111 (1997).

    Article  CAS  Google Scholar 

  5. Urtiew, P.A. & Grover, R. Temperature deposition caused by shock interactions with material interfaces. J. Appl. Phys. 45, 140–145 (1974).

    Article  CAS  Google Scholar 

  6. Grover, R. & Urtiew, P.A. Thermal relaxation at interfaces following shock compression. J. Appl. Phys. 45, 146–152 (1974).

    Article  CAS  Google Scholar 

  7. Urtiew, P.A. Effect of shock loading on transparency of sapphire crystals. J. Appl. Phys. 45, 3490–3493 (1974).

    Article  CAS  Google Scholar 

  8. Bass, J., Svendsen, B. & Ahrens, T.J. in High Pressure Research in Mineral Physics (eds Manghnani, M. H. & Syono, Y.) 393–402 (Geophys. Monogr. Ser. 39, American Geophysical Union, Washington DC, 1987).

    Google Scholar 

  9. Nellis, W.J. & Yoo, C.S. Issues concerning shock temperature measurements of iron and other metals. J. Geophys. Res. 95, 21749–21752 (1990).

    Article  Google Scholar 

  10. McQueen, R.G. & Isaak, D.G. Characterizing windows for shock wave radiation studies. J. Geophys. Res. 95, 21753–21765 (1990).

    Article  Google Scholar 

  11. Yoo, C.S., Holmes, N.C. & See, E. in Shock Compression of Condensed Matter (eds Schmidt, S. C., Dick, R. D., Forbes, J. W. & Tasker, D. G.) 733–736 (Elsevier Science, Amsterdam, 1992).

    Google Scholar 

  12. Weir, S.T., Mitchell, A.C. & Nellis, W.J. Electrical resistivity of single-crystal Al2O3 shock-compressed in the pressure range 91–220 GPa (0.91–2.2 Mbar). J. Appl. Phys. 80, 1522–1525 (1996).

    Article  CAS  Google Scholar 

  13. Mashimo, T. et al. High-pressure phase transformation of corundum (α-Al2O3) observed under shock compression. Geophys. Res. Lett. 27, 2021–2024 (2000).

    Article  CAS  Google Scholar 

  14. Hama, J. & Suito, K. The evidence for the occurrence of two successive transitions in Al2O3 from the analysis of Hugoniot data. High Temp. High Press. 34, 323–334 (2002).

    Article  CAS  Google Scholar 

  15. Cohen, R. Calculation of elasticity and high pressure instabilities in corundum and stishovite with the potential induced breathing model. Geophys. Res. Lett. 14, 37–40 (1987).

    Article  Google Scholar 

  16. Cynn, H., Isaak, D.G., Cohen, R.E., Nicol, M.F. & Anderson, O.L. A high-pressure phase transition of corundum predicted by the potential induced breathing model. Am. Mineral. 75, 439–442 (1990).

    CAS  Google Scholar 

  17. Marton, F.C. & Cohen, R.E. Prediction of a high-pressure phase in Al2O3 . Am. Mineral. 79, 789–792 (1994).

    CAS  Google Scholar 

  18. Thomson, K.T., Wentzcovitch, R.M. & Bukowinski, M.S.T. Polymorphs of alumina predicted by first principles: Putting pressure on the ruby pressure scale. Science 274, 1880–1882 (1996).

    Article  CAS  Google Scholar 

  19. Duan, W., Wentzcovitch, R.M. & Thomson, K.T. First-principles study of high-pressure alumina polymorphs. Phys. Rev. B 57, 10363–10369 (1998).

    Article  CAS  Google Scholar 

  20. Duan, W., Paiva, G., Wentzcovitch, R.M. & Fazzio, A. Optical transitions in ruby across the corundum to Rh2O3 (II) phase transformation. Phys. Rev. Lett. 81, 3267–3270 (1998).

    Article  CAS  Google Scholar 

  21. Duan, W., Karki, B.B. & Wentzcovitch, R.M. High-pressure elasticity of alumina studied by first principles. Am. Mineral. 84, 1961–1966 (1999).

    Article  CAS  Google Scholar 

  22. Shannon, R.D. & Prewitt, C.T. Synthesis and structure of a new high-pressure form of Rh2O3 . J. Solid State Chem. 2, 134–136 (1970).

    Article  CAS  Google Scholar 

  23. Holmes, N.C., Moriarty, J.A., Gathers, G.R. & Nellis, W.J. The equation of state of platinum to 660 GPa (6.6 Mbar). J. Appl. Phys. 66, 2962–2967 (1989).

    Article  CAS  Google Scholar 

  24. Lin, J.F., Shu, J., Mao, H.K., Hemley, R.J. & Shen, G. Amorphous boron gasket in diamond anvil cell research. Rev. Sci. Instrum. 74, 4732–4736 (2003).

    Article  CAS  Google Scholar 

  25. Shen, G., Rivers, M.L., Wang, Y. & Sutton, S.R. Laser heated diamond cell system at the Advanced Photon Source for in situ X-ray measurements at high pressure and temperature. Rev. Sci. Instrum. 72, 1273–1282 (2001).

    Article  CAS  Google Scholar 

  26. Watanuki, T., Shimomura, O., Yagi, T., Kondo, T. & Isshiki, M. Construction of laser-heated diamond anvil cell system for in situ x-ray diffraction study at SPring-8. Rev. Sci. Instrum. 72, 1289–1292 (2001).

    Article  CAS  Google Scholar 

  27. Hammersley, A.P. FIT2D V10.3 Reference Manual V4.0 (European Synchrotron Radiation Facility, Grenoble, 1998).

    Google Scholar 

  28. Larson, A.C. & Von Dreele, R.B. GSAS Manual (Report LAUR 86–748, Los Alamos National Laboratory, Los Alamos, 1988).

    Google Scholar 

  29. Rozenberg, G. Kh. et al. High-pressure structural studies of hematite Fe2O3 . Phys. Rev. B 65, 064112 (2002).

    Article  Google Scholar 

  30. Sobolev, N.V. et al. Fossilized high pressure from the Earth's deep interior: The coesite-in-diamond barometer. Proc. Natl Acad. Sci. 97, 11875–11879 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at the BL10XU sector of SPring-8, Japan, and at the HPCAT and GSECARS sectors of the Advanced Photon Source, Argonne National Laboratory, for help with the synchrotron facilities. We also thank G. Shen, V. Prakapenka, M. Yue, O. Yasuo and J. Shu for their assistance in the experiments, and C. Sanloup, R. Hazen, M. Somayazulu, R. Cohen, S. Merkel, Y. Fei and S. Hardy for discussions. This work was supported by the NSF (grant EAR-0217389). Work at Carnegie was supported by DOE/BES, DOE/NNSA (CDAC no. DE-FC03-03NA00144), the NSF and the W.M. Keck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Fu Lin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 150 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, JF., Degtyareva, O., Prewitt, C. et al. Crystal structure of a high-pressure/high-temperature phase of alumina by in situ X-ray diffraction. Nature Mater 3, 389–393 (2004). https://doi.org/10.1038/nmat1121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing