Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thin organic films by atmospheric-pressure ion deposition

Abstract

Interest in thin films of functional organic materials has increased enormously in recent years because of the wide range of possible applications. Here we report an experimental setup for processing various organic materials into thin structured films under atmospheric pressure. The technique is based on an electrospray process. Microdroplets are initially formed and dried, generating ions that are extracted by electrostatic lenses. Thin structured films are then produced by the deposition of the resulting ion beam onto a moveable target. The technique offers several interesting features, including precise control of film thicknesses. We have also made experiments to investigate structured deposition, this being the first step towards the production of thin films where in all three dimensions the chemical composition can be chosen at will. This might provide a simple approach towards creating thin structured films and composites that are currently unattainable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atmospheric-pressure ion deposition (APID).
Figure 2: Simulation of ion trajectories with SIMION 7.0.
Figure 3: High-quality thin films.
Figure 4: Three-dimensionally structured films of polymer 1.

(Image credit: Bettmann/Corbis.)

Figure 5: Multi-component systems of materials with comparable solubility.
Figure 6: APID as a technique for molecular electronics.

Similar content being viewed by others

References

  1. Fraxedas, J. Perspectives on thin molecular organic films. Adv. Mater. 14, 1603–1614 (2002).

    Article  CAS  Google Scholar 

  2. Zhang, S., Wright, G. & Yang, Y. Materials and techniques for electrochemical biosensor design and construction. Biosens. Bioelectron. 15, 273–282 (2000).

    Article  CAS  Google Scholar 

  3. Tvarozek, V. et al. Thin films in biosensors. Vacuum 50, 251–262 (1998).

    Article  CAS  Google Scholar 

  4. Friend, R.H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    Article  CAS  Google Scholar 

  5. Hebner, T.R., Wu, C.C., Marcy, D., Lu, M.H. & Sturm, J.C. Ink-jet printing of doped polymers for organic light emitting devices. Appl. Phys. Lett. 72, 519–521 (1998).

    Article  CAS  Google Scholar 

  6. Chang, S. et al. Dual-color polymer light-emitting pixels processed by hybrid inkjet printing. Appl. Phys. Lett. 73, 2561–2563 (1998).

    Article  CAS  Google Scholar 

  7. Scariciftci, N.S., Smilowitz, L., Heeger, A.J. & Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992).

    Article  Google Scholar 

  8. Granström, M., Petritsch, K., Arias, A.C. & Friend, R.H. High efficiency polymer photodiodes. Synth. Met. 102, 957–958 (1999).

    Article  Google Scholar 

  9. Inganäs, O. et al. Recent progress in thin organic photodiodes. Synth. Met. 121, 1525–1528 (2001).

    Article  Google Scholar 

  10. Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    Article  CAS  Google Scholar 

  11. Garrnier, F., Haijlaoui, R., Yassar, A. & Srivastava, P. All-polymer field-effect transistor realized by printing techniques. Science 265, 1684–1686 (1994).

    Article  Google Scholar 

  12. Miyata, S. & Tao, X.T. Recent progress of organic nonlinear optics in Japan. Synth. Met. 81, 99–115 (1996).

    Article  CAS  Google Scholar 

  13. Egevskaya, T. & Borisov, G. Superthin polymeric film and its application in optics. Vib. Spectrosc. 30, 3–6 (2002).

    Article  CAS  Google Scholar 

  14. Zarras, P. et al. Progress in using conductive polymers as corrosion-inhibiting coatings. Radiat. Phys. Chem. 68, 387–394 (2003).

    Article  CAS  Google Scholar 

  15. Granqvist, C.G., Avendano, E. & Azens, A. Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films 442, 201–211 (2003).

    Article  CAS  Google Scholar 

  16. Sabnis, R.W. et al. Organic polymeric coatings deposited by plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. 19, 2184–2189 (2001).

    Article  CAS  Google Scholar 

  17. Walsh, C.B. & Franses, E.I. Ultrathin PMMA films spin-coated from toluene solutions. Thin Solid Films 429, 71–76 (2003).

    Article  CAS  Google Scholar 

  18. Cecchi, M., Smith, H. & Braun, D. Method to optimize polymer film spin coating for polymer LED displays. Synth. Met. 121, 1715–1716 (2001).

    Article  CAS  Google Scholar 

  19. Joly, S. et al. Multilayer nanoreactors for metallic and semiconducting particles. Langmuir 16, 1354–1359 (2000).

    Article  CAS  Google Scholar 

  20. Jiang, S., Chen, X., Zhang, L. & Liu, M. A one-solution layer-by-layer method to fabricate ultrathin organic films. Thin Solid Films 425, 117–120 (2003).

    Article  CAS  Google Scholar 

  21. Ram, M.K. et al. Fabrication and characterization of poly[(2-methoxy-5-(2′-ethyl-hexyloxy)phenylene vinylene] (MEHPPV) Langmuir-Schaefer films and their application as photoelectrochemical cells. Synth. Met. 122, 369–378 (2001).

    Article  CAS  Google Scholar 

  22. Zhang, L. et al. Electro-optic property measurements of electrostatically self-assembled ultrathin films. Opt. Commun. 186, 135–141 (2000).

    Article  CAS  Google Scholar 

  23. Hammond, P.T. Recent explorations in electrostatic multilayer thin film assembly. Curr. Opin. Colloid Interface Sci. 4, 430–442 (2000).

    Article  Google Scholar 

  24. Alfrey, T. Jr, Gurnee, E.F. & Schrenk, W.J. Physical optics of iridescent multilayered plastic films. Polym. Eng. Sci. 9, 400–404 (1969).

    Article  CAS  Google Scholar 

  25. Weber, M.F., Stover, C.A., Gilbert, L.R., Nevitt, T.J. & Ouderkirk, A.J. Giant birefringent optics in multilayer polymer mirrors. Science 287, 2451–2456 (2000).

    Article  CAS  Google Scholar 

  26. Saf, R., Mirtl, Ch. & Hummel, K. Electrospray ionization mass spectrometry as an analytical tool for non-biological monomers, oligomers and polymers. Acta Polym. 48, 513–526 (1997).

    Article  CAS  Google Scholar 

  27. Schmitt, C. & Lebienvenu, M. Electrostatic painting of conductive composite materials. J. Mater. Process. Technol. 134, 303–309 (2003).

    Article  CAS  Google Scholar 

  28. Hoyer, B., Sørensen, G., Jensen, N., Nielsen, D.B. & Larsen, B. Electrostatic spraying: a novel technique for preparation of polymer coatings on electrodes. Anal. Chem. 68, 3840–3844 (1996).

    Article  CAS  Google Scholar 

  29. Lapham, D.P., Colbeck, I., Schoonman, J. & Kamlag, Y. The preparation of NiCo2O4 films by electrostatic deposition. Thin Solid Films 391, 17–20 (2001).

    Article  CAS  Google Scholar 

  30. Wilhelm, O., Mädler, L. & Pratsinis, S.E. Electrospray evaporation and deposition. J. Aerosol Sci. 34, 815–836 (2003).

    Article  CAS  Google Scholar 

  31. Tolmachev, A.V., Chernushevich, I.V., Dodonov, A.F. & Standing, K.G. A collisional focusing ion guide for coupling an atmospheric pressure ion source to a mass spectrometer. Nucl. Instrum. Meth. B 124, 112–119 (1997).

    Article  CAS  Google Scholar 

  32. Lock, C.M. & Dyer, E.W. Simulation of ion trajectories through a high pressure radio frequency only quadrupole collision cell by SIMION 6.0. Rapid Commun. Mass Spectrom. 13, 422–431 (1999).

    Article  CAS  Google Scholar 

  33. Gidden, J., Jackson, A.T., Scrivens, J.H. & Bowers, M.T. Gas phase conformations of synthetic polymers: poly (methyl methacrylate) oligomers cationized by sodium ions. Int. J. Mass Spectrom. 188, 121–130 (1999).

    Article  CAS  Google Scholar 

  34. Schwartz, B.J. Conjugated polymers as molecular materials: how chain conformation and film morphology influence energy transfer and interchain interactions. Annu. Rev. Phys. Chem. 54, 141–172 (2003).

    Article  CAS  Google Scholar 

  35. Liu, J., Shi, Y. & Yang, Y. Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices. Adv. Funct. Mater. 11, 420–424 (2001).

    Article  CAS  Google Scholar 

  36. Shi, Y., Liu, J. & Yang, Y. Device performance and polymer morphology in polymer light emitting diodes: the control of thin film morphology and device quantum efficiency. J. Appl. Phys. 87, 4254–4263 (2000).

    Article  CAS  Google Scholar 

  37. Liu, J., Guo, T., Shi, Y. & Yang, Y. Solvation induced morphological effects on the polymer/metal contacts. J. Appl. Phys. 89, 3668–3673 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Albering (Institute for Technology of Inorganic Materials, Graz University of Technology) for assistance with AFM measurements, E. Zojer, A. Pogantsch and S. Rentenberger for experiments towards OLEDs, and the Austrian Science Fund (SFB Electroactive Materials, F922; project P13962-CHE) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Saf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saf, R., Goriup, M., Steindl, T. et al. Thin organic films by atmospheric-pressure ion deposition. Nature Mater 3, 323–329 (2004). https://doi.org/10.1038/nmat1117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing