Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials

Abstract

Combinatorial methods offer an efficient approach for the development of new materials. Methods for generating combinatorial samples of materials, and methods for characterizing local composition and structure by electron microprobe analysis and electron-backscatter diffraction are relatively well developed1,2,3,4. But a key component for combinatorial studies of materials is high-spatial-resolution measurements of the property of interest, for example, the magnetic, optical, electrical5, mechanical6 or thermal properties of each phase, composition or processing condition. Advances in the experimental methods used for mapping these properties will have a significant impact on materials science and engineering. Here we show how time-domain thermoreflectance can be used to image the thermal conductivity of the cross-section of a Nb–Ti–Cr–Si diffusion multiple, and thereby demonstrate rapid and quantitative measurements of thermal transport properties for combinatorial studies of materials. The lateral spatial resolution of the technique is 3.4 μm, and the time required to measure a 100 × 100 pixel image is ≈ 1 h. The thermal conductivity of TiCr2 decreases by a factor of two in crossing from the near-stoichiometric side of the phase to the Ti-rich side; and the conductivity of (Ti,Nb)3Si shows a strong dependence on crystalline orientation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ratio of the in-phase to out-of-phase voltage as a function of delay time and the thermal conductivity of the sample.
Figure 2: Thermal conductivity imaging and electron microprobe analysis of a Cr–Ti diffusion couple.
Figure 3: Thermal conductivity imaging of a Nb–Si–Ti diffusion multiple.

Similar content being viewed by others

References

  1. Xiang, X.-D. et al. A combinatorial approach to materials discovery. Science 268, 1738–1740 (1995).

    Article  CAS  Google Scholar 

  2. Xiang, X.-D. Combinatorial materials synthesis and screening: an integrated materials chip approach to discovery and optimization of functional materials. Ann. Rev. Mater. Sci. 29, 149–171 (1999).

    Article  CAS  Google Scholar 

  3. Zhao, J.-C. A combinatorial approach for efficient mapping of phase diagrams and properties. J. Mater. Res. 16, 1565–1578 (2001).

    Article  CAS  Google Scholar 

  4. Zhao, J.-C., Jackson, M.R., Peluso, L.A. & Brewer, L. A diffusion multiple approach for accelerated design of structural materials. Mater. Res. Soc. Bull. 27, 324–329 (2002).

    Article  CAS  Google Scholar 

  5. Gao, C. & Xiang, X.-D. Quantitative microwave near-field microscopy of dielectric properties. Rev. Sci. Instrum. 69, 3846–3851 (1998).

    Article  CAS  Google Scholar 

  6. Oliver, W.C. & Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  7. Rosencwaig, A., Opsal, J., Smith, W.L. & Willenborg, D.L. Detection of thermal waves through optical reflectance. Appl. Phys. Lett. 46, 1013–1015 (1985).

    Article  CAS  Google Scholar 

  8. Majumdar, A. Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29, 505–585 (1999).

    Article  CAS  Google Scholar 

  9. Cahill, D.G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003).

    Article  CAS  Google Scholar 

  10. Lepoutre, F. et al. Micron-scale thermal characterizations of interfaces parallel or perpendicular to the surface. J. Appl. Phys. 78, 2208–2223 (1995).

    Article  CAS  Google Scholar 

  11. Li, B., Pottier, L., Roger, J.P., Fournier, D., Watari, K. & Hirao, K. Measuring the anisotropic thermal diffusivity of silicon nitride grains by thermoreflectance microscopy. J. Eur. Ceram. Soc. 19, 1631–1639 (1999).

    Article  CAS  Google Scholar 

  12. Paddock, C.A. & Eesley, G.L. Transient thermoreflectance from thin metal films. J. Appl. Phys. 60, 285–290 (1986).

    Article  CAS  Google Scholar 

  13. Young, D.A., Thomsen, C., Grahn, H.T., Maris, H.J. & Tauc, J. in Phonon Scattering in Condensed Matter (eds Anderson, A.C. & Wolfe, J.P.) 49 (Springer, Berlin, 1986).

    Book  Google Scholar 

  14. Capinski, W.S. & Maris, H.J. Improved apparatus for picosecond pump-and-probe optical measurements. Rev. Sci. Instrum. 67, 2720–2726 (1996).

    Article  CAS  Google Scholar 

  15. Capinski, W.S. et al. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B 59, 8105–8113 (1999).

    Article  CAS  Google Scholar 

  16. Costescu, R.M., Wall, M.A. & Cahill, D.G. Thermal conductance of epitaxial interfaces. Phys. Rev. B 67, 054302 (2003).

    Article  Google Scholar 

  17. Zhao, J.-C., Jackson, M.R. & Peluso, L.A. Mapping of the Nb-Ti-Si phase diagram using diffusion multiples. Mater. Sci. Eng. A 111, 111 (2003).

    Google Scholar 

  18. Powell, R.W. & Tye, R.P. The thermal and electrical conductivity of titanium and its alloys. J. Less-Common Metals 3, 226–233 (1961).

    Article  CAS  Google Scholar 

  19. Verhoeven, H. et al. Influence of the microstructure on the thermal properties of thin polycrystalline diamond films. Appl. Phys. Lett. 71, 1329–1331 (1997).

    Article  CAS  Google Scholar 

  20. O'Hara, K.E., Hu, X.-Y. & Cahill, D.G. Characterization of nanostructured metal films by picosecond acoustics and interferometry. J. Appl. Phys. 90, 4852–4858 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Energy grant DEFG02-01ER45938 and National Science Foundation grant No. CTS-0319235. For sample characterization we used the facilities of the Center for Microanalysis of Materials and the MRL Laser Facility, University of Illinois at Urbana-Champaign, which is partially supported by the US Department of Energy under grant DEFG02-91-ER45439. We thank L. A. Peluso for microprobe analysis, L. N. Brewer for electron-backscatter diffraction, and A. M. Ritter for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Cahill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huxtable, S., Cahill, D., Fauconnier, V. et al. Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nature Mater 3, 298–301 (2004). https://doi.org/10.1038/nmat1114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing