Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large anomalous Hall effect in a silicon-based magnetic semiconductor


Magnetic semiconductors are attracting great interest because of their potential use for spintronics, a new technology that merges electronics with the manipulation of conduction electron spins. (GaMn)As and (GaMn)N have recently emerged as the most popular materials for this new technology, and although their Curie temperatures are rising towards room temperature, these materials can only be fabricated in thin-film form, are heavily defective, and are not obviously compatible with Si. We show here that it is productive to consider transition metal monosilicides as potential alternatives. In particular, we report the discovery that the bulk metallic magnets derived from doping the narrow-gap insulator FeSi with Co share the very high anomalous Hall conductance of (GaMn)As, while displaying Curie temperatures as high as 53 K. Our work opens up a new arena for spintronics, involving a bulk material based only on transition metals and Si, which displays large magnetic-field effects on its electrical properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Phase diagram of Fe1−xMnxSi and Fe1−yCoySi.
Figure 2: Comparison of Fe0.9Co0.1Si, Fe0.1Mn0.9Si, MnSi, and (Ga1−zMnz)As (z = 0.053) taken from refs 2,3.
Figure 3: Temperature and magnetic-field dependence of the AHE.
Figure 4: The Hall effect of paramagnetic metals and insulators, and ferromagnetic metals at 1 kG and low temperature.
Figure 5: Hall conductivity (σxy) of ferromagnetic metals and heavy fermion materials.


  1. 1

    Ohno, H., Munekata, H., Penney, T., von Molnar, S. & Chang, L.L. Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett. 68, 2664–2667 (1992).

    CAS  Article  Google Scholar 

  2. 2

    Ohno, H. et al. (GaMn)As: A new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363–365 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Matsukura, F., Ohno, H., Shen, A. & Sugawara, Y. Transport properties and origin of ferromagnetism in (GaMn)As. Phys. Rev. B 57, R2037–R2040 (1998).

    CAS  Article  Google Scholar 

  4. 4

    Reed, M.L. et al. Room temperature ferromagnetic properties of (GaMn)N. Appl. Phys. Lett. 79, 3473–3475 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Schlesinger, Z. et al. Unconventional charge gap formation in FeSi. Phys. Rev. Lett. 71, 1748–1751 (1993).

    CAS  Article  Google Scholar 

  6. 6

    van der Marel, D., Damascelli, A., Schulte, K. & Menovsky, A.A. Spin, charge, and bonding in transition metal mono-silicides. Physica B 244, 138–147 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Manyala, N. et al. Magnetoresistance from quantum interference effects in ferromagnets. Nature 404, 581–584 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Beille, J., Voiron, J. & Roth, M. Long period helimagnetism in the cubic-B20 Fe1−xCoxSi and CoxMn1−xSi alloys. Solid State Commun. 47, 399–402 (1983).

    CAS  Article  Google Scholar 

  9. 9

    Wernick, J.H., Wertheim, G.K. & Sherwood, R.C. Magnetic behavior of the monosilicides of 3d-transition elements. Mater. Res. Bull. 7, 1431–1441 (1972).

    CAS  Article  Google Scholar 

  10. 10

    Aeppli, G. & Fisk, Z. Kondo Insulators. Comment Condens. Matter Phys. 16, 155–165 (1992).

    CAS  Google Scholar 

  11. 11

    Jaccarino, V., Wertheim, G.K., Wernick, J.H., Walker, L.R. & Arajs, S. Paramagnetic excited states of FeSi. Phys. Rev. 160, 476–482 (1967).

    CAS  Article  Google Scholar 

  12. 12

    DiTusa, J.F., Friemelt, K., Bucher, E., Aeppli, G. & Ramirez, A.P. Metal-insulator transitions in Kondo insulator FeSi and classic semiconductors are similar. Phys. Rev. Lett. 78, 2831–2834 (1997); 78, 4309(E) (1997).

    CAS  Article  Google Scholar 

  13. 13

    Chernikov, M.A. et al. Low temperature transport, optical, magnetic, and thermodynamic properties of Fe1−xCoxxSi. Phys. Rev. B 56, 1366–1375 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism (ed. by Fulde, P.) (Springer, Berlin, 1985).

    Book  Google Scholar 

  15. 15

    Mena, F.P. et al. Heavy carriers and non-Drude optical conductivity in MnSi. Phys. Rev. B 67, 241101 (2003).

    Article  Google Scholar 

  16. 16

    Pfleiderer, C., Julian, S.R. & Lonzarich, G.G. Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets. Nature 414, 427–430 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Campbell, I.A. & Fert, A. Ferromagnetic Materials vol. 3 (ed. Wohlfarth, E. P.) (North-Holland, Amsterdam, 1982).

    Google Scholar 

  18. 18

    Maranzana, F.E. Contribution to the theory of the anomalous Hall effect in ferro- and antiferromagnetic materials. Phys. Rev. 160, 421–429 (1967).

    CAS  Article  Google Scholar 

  19. 19

    Mattheiss, L.F. & Hamann, D.R. Band structure and semiconducting properties of FeSi. Phys. Rev. B 47, 13114–13119 (1993).

    CAS  Article  Google Scholar 

  20. 20

    Lavine, J.M. Extraordinary Hall-effect measurements on Ni, some Ni alloys, and ferrites. Phys. Rev. 123, 1273–1277 (1961).

    CAS  Article  Google Scholar 

  21. 21

    Cattaneo, E. Hall-effect of Ce intermetallic compounds. Z. Phys. B 64, 305–316 (1986).

    CAS  Article  Google Scholar 

  22. 22

    Coleman, P., Anderson, P.W. & Ramakrishnan, T.V. Theory of the anomalous Hall constant of mixed-valence systems. Phys. Rev. Lett. 55, 414–417 (1985).

    CAS  Article  Google Scholar 

  23. 23

    Matl, P. et al. Hall effect of the colossal magnetoresistance manganite La1−xCaxMnO3 . Phys. Rev. B 57, 10248–10251 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Otto M.J. et al. Half-metallic ferromagnets: II. Transport properties of NiMnSb and related inter-metallic compounds. J. Phys. Condens. Matter 1, 2351–2360 (1989).

    CAS  Article  Google Scholar 

  25. 25

    Tomioka, Y. et al. Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMoO6 . Phys. Rev. B 61, 422–427 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Jungwirth, T., Niu, Q. & MacDonald, A.H. Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 88, 207–208 (2002).

    Article  Google Scholar 

  27. 27

    Luttinger, J.M. Theory of the Hall effect in ferromagnetic substances. Phys. Rev. 112, 739–751 (1958).

    CAS  Article  Google Scholar 

  28. 28

    Ye, J. et al. Berry phase theory of the anomalous Hall effect: application to colossal magnetoresistance manganites. Phys. Rev. Lett. 83, 3737–3740 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Kadowaki, K. & Woods, S.B. Universal relationship of the resistivity and specific—heat in heavy-Fermion compounds. Solid State Commun. 58, 507–509 (1986).

    CAS  Article  Google Scholar 

  30. 30

    Emel'yanenko, O.V., Lagunova, T.S., Nasledov, D.N. & Talalakin, G.N. Formation and properties of an impurity band in n-type GaAs. Fiz. Tver. Tela 7, 1315–1323 (1965).

    CAS  Google Scholar 

  31. 31

    Field, S.B. & Rosenbaum, T.F. Critical behavior of the Hall conductivity at the Metal-Insulator Transition. Phys. Rev. Lett. 55, 522–524 (1985).

    CAS  Article  Google Scholar 

  32. 32

    Chapman, P.W., Tufte, O.N., Zook, J.D. & Long, D. Electrical properties of heavily doped silicon. J. Appl. Phys. 34, 3291–3294 (1963).

    CAS  Article  Google Scholar 

  33. 33

    Leighton, C., Terry, I. & Becla, P. Metallic conductivity near the metal insulator transition in Cd1−xMnxTe. Phys. Rev. B 58, 9773–9782 (1998).

    CAS  Article  Google Scholar 

  34. 34

    Carter, G.C. & Pugh, E.M. Hall effect and transverse magnetoresistance in some ferromagnetic iron-chromium alloys. Phys. Rev. 152, 498–504 (1966).

    CAS  Article  Google Scholar 

  35. 35

    Dorleijn, J.W. Electrical conduction in ferromagnetic metals. Philips Res. Rep. 31, 287–410 (1976).

    CAS  Google Scholar 

  36. 36

    McGuire, T.R., Gambino, R.J. & Taylor, R.C. Hall effect in amorphous thin-film magnetic alloys. J. Appl. Phys. 48, 2965–2970 (1977).

    CAS  Article  Google Scholar 

  37. 37

    Canedy, C.L., Gong, G.Q., Wang, J.Q. & Xiao, G. Large magnetic hall effect in ferromagnetic Fex Pt100−x thin films. J. Appl. Phys. 79, 6126–6128 (1996).

    CAS  Article  Google Scholar 

  38. 38

    Lin, S.C.H. Hall effect in an amorphous ferromagnetic alloy. J. Appl. Phys. 40, 2175–2176 (1969).

    CAS  Article  Google Scholar 

  39. 39

    Bergmann, G. & Marquardt, P. Resistivity of amorphous ferromagnetic FecAu1−c alloys: Anisotropy and field dependence. Phys. Rev. B 18, 326–337 (1978).

    CAS  Article  Google Scholar 

  40. 40

    Pakhomov, A.B., Yan, X. & Zhao, B. Observation of giant Hall effect in granular magnetic films. J. Appl. Phys. 79, 6140–6142 (1996).

    CAS  Article  Google Scholar 

  41. 41

    Pakhomov, A.B., Yan, X. & Zhao, B. Giant Hall effect in percolating ferromagnetic granular metal-insulator films. Appl. Phys. Lett. 67, 3497–3499 (1995).

    CAS  Article  Google Scholar 

  42. 42

    Samoilov, A.V., Beach, G., Fu, C.C., Yeh, N.-C. & Vasquez R.P. Magnetic percolation and giant spontaneous Hall effect in La1−xCaxCoO3 (0.2 ≤ x ≤ 0.5). Phys. Rev. B 57, R14032–R14035 (1998).

    CAS  Article  Google Scholar 

  43. 43

    Katsufuji, T., Hwang, H.Y. & Cheong, S.-W. Anomalous magnetotransport properties of R2Mo2O7 near the magnetic phase boundary. Phys. Rev. Lett. 84, 1998–2001 (2000).

    CAS  Article  Google Scholar 

  44. 44

    Taguchi, Y. & Tokura, Y. Magnetotransport phenomena in a metallic ferromagnet of the verge of a Mott transition: Sm2Mo2O7 . Phys. Rev. B 60, 10280–10283 (1999).

    CAS  Article  Google Scholar 

  45. 45

    Batlogg, B. et al. Charge dynamics in (LaSr)CuO4 - from underdoping to overdoping. J. Low Temp. Phys. 95, 23–31 (1994).

    CAS  Article  Google Scholar 

  46. 46

    Bucher, B. et al. Charge dynamics of Ce-based compounds: Connection between the mixed valent and Kondo-insulator states. Phys. Rev. B 53, R2948–R2951 (1996).

    CAS  Article  Google Scholar 

  47. 47

    Lapierre, F. et al. Hall effect in heavy Fermion systems. J. Magn. Magn. Mater. 63–64, 338–340 (1987).

    Article  Google Scholar 

  48. 48

    Hadzic-Leroux, H. et al. Hall effect in heavy-Fermion systems: UPt3, UAl2, CeAl3, CeRu2Si2 . Europhys. Lett. 1, 579–584 (1986).

    CAS  Article  Google Scholar 

  49. 49

    Gao, Q.Z. et al. On the crystal field and Kondo effect in CeIn3 . J. Magn. Magn. Mater. 47–48, 69–71 (1985).

    Article  Google Scholar 

  50. 50

    Djerbi, R. et al. Influence of Y and La alloying on the anomalous Hall-effect of CeRu2Si2 . J. Magn. Magn. Mater. 76–77, 267–268 (1988).

    Article  Google Scholar 

  51. 51

    Kasuya, T. et al. in Valence Fluctuations in Solids (eds Falicov, L. M., Henke, W.& Maple, M. B.) 281–284 (North-Holland, Amsterdam, 1981).

    Google Scholar 

  52. 52

    Penney, T. et al. Hall effect in the heavy Fermion systems CeCu6 and UBe13 . J. Magn. Magn. Mater. 54–57, 370–372 (1986).

    Article  Google Scholar 

Download references


We thank D. A. Browne and J. Y. Chan for discussions. J.F.D., Z.F. and G.A. acknowledge the support of the National Science Foundation under contract Nos DMR 0103892, DMR 0203214, and a Wolfson-Royal Society Research Merit Award and the Basic Technologies programme of the UK Research Councils, respectively.

Author information



Corresponding author

Correspondence to John F. DiTusa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manyala, N., Sidis, Y., DiTusa, J. et al. Large anomalous Hall effect in a silicon-based magnetic semiconductor. Nature Mater 3, 255–262 (2004).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing