Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oxidation of plutonium dioxide

Abstract

The physics and chemistry of the actinide elements form the scientific basis for rational handling of nuclear materials1,2,3. In recent experiments4, most unexpectedly, plutonium dioxide has been found to react with water to form higher oxides up to PuO2.27, whereas PuO2 had always been thought to be the highest stable oxide of plutonium2,3. We perform a theoretical analysis of this complicated situation on the basis of total energies calculated within density functional theory5,6 combined with well-established thermodynamic data. The reactions of PuO2 with either O2 or H2O to form PuO2+δ are calculated to be endothermic: that is, in order to occur they require a supply of energy. However, our calculations show that PuO2+δ can be formed, as an intermediate product, by reactions with the products of radiolysis of water, such as H2O2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calculated enthalpies of formation for PuO2±δ solid solutions, as a function of stoichiometry and defect structure.
Figure 2: Calculated and experimental4,24 compositional variation of the lattice parameter in PuO2±δ solid solutions relative to stoichiometric PuO2.

Similar content being viewed by others

References

  1. Brooks, M.S.S., Johansson, B. & Skriver, H.L. in Handbook on the Physics and Chemistry of the Actinides Vol. 1 (eds Freeman, A.J. & Lander, G.H.) 153–269 (North-Holland, New York, 1984).

    Google Scholar 

  2. Keller, C. in Comprehensive Inorganic Chemistry Vol. 5 Actinides (eds Bailar, J.C., Emeleus, H.J., Nyholm, R. & Trotman-Dickenson, A.F.) 219–276 (Pergamon, Oxford, 1973).

    Book  Google Scholar 

  3. Morss, L.R. in The Chemistry of the Actinide Elements 2nd edn Vol. 2 (eds Katz, J.J., Seaborg, G.T. & Morss, L.R.) 1278–1360 (Chapman and Hall, London, 1986).

    Book  Google Scholar 

  4. Haschke, J.M., Allen, T.H. & Morales, L.A. Reaction of plutonium dioxide with water: formation and properties of PuO2+x Science 287 285–287 (2000).

    Article  CAS  Google Scholar 

  5. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  6. Kohn, W. & Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  7. Christensen, H. & Sunder, S. Current state of knowledge of water radiolysis effects on spent nuclear fuel corrosion. Nucl. Technol. 131, 102–123 (2000).

    Article  CAS  Google Scholar 

  8. Haschke, J.M., Allen, T.H. & Morales, L.A. Surface and corrosion chemistry of plutonium. Los Alamos Sci. 26, 252–273 (2000).

    CAS  Google Scholar 

  9. Haire, R.G. & Haschke, J.M. Plutonium oxide systems and related corrosion products. Mater. Res. Soc. Bull. 26, 689–696 (2001).

    Article  Google Scholar 

  10. Haschke, J.M. & Oversby, V.M. Plutonium chemistry: a synthesis of experimental data and a quantitative model for plutonium oxide solubility. J. Nucl. Mater. 305, 187–201 (2002).

    Article  CAS  Google Scholar 

  11. Haschke, J.M. & Allen, T.H. Equilibrium and thermodynamic properties of the PuO2+x solid solution. J. Alloy Compd 336 124–131 (2002).

    Article  CAS  Google Scholar 

  12. Eriksson, O., Becker, J.D., Balatsky, A.V. & Wills, J.M. Novel electronic configuration in δ-Pu. J. Alloy Compd 287, 1–5 (1999).

    Article  CAS  Google Scholar 

  13. Savrasov, S.Y. & Kotliar, G. & Abrahams, E. Correlated electrons in δ-plutonium within a dynamical mean-field picture. Nature 410, 793–795 (2001).

    Article  CAS  Google Scholar 

  14. Kudin, K.N., Scuseira, G.E. & Martin, R.L. Hybrid density-functional theory and the insulating gap of UO2 . Phys. Rev. Lett. 89, 266402 (2002).

    Article  Google Scholar 

  15. Abrikosov, I.A. & Skriver, H.L. Self-consistent linear-muffin-tin-orbitals coherent-potential technique for bulk and surface calculations: Cu–Ni, Ag–Pd, and Au–Pt random alloys. Phys. Rev. B 47, 16532–16541 (1993).

    Article  CAS  Google Scholar 

  16. Abrikosov, I.A., Simak, S.I., Johansson, B., Ruban, A.V. & Skriver, H.L. Locally self-consistent Green's function approach to the electronic structure problem. Phys. Rev. B 56, 9319–9334 (1997).

    Article  CAS  Google Scholar 

  17. Ruban, A.V. & Skriver, H.L. Calculated surface segregation in transition metal alloys. Comput. Mater. Sci. 15, 119–143 (1999).

    Article  CAS  Google Scholar 

  18. Perdew, J.P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  19. Vitos, L., Johansson, B., Kollár, J. & Skriver, H.L. Exchange energy in the local Airy gas approximation. Phys. Rev. B 62, 10046–10050 (2000).

    Article  CAS  Google Scholar 

  20. Perdew, J.P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  21. Skriver, H.L., Andersen, O.K. & Johansson, B. 5f-electron delocalization in americium. Phys. Rev. Lett. 44, 1230–1233 (1980).

    Article  CAS  Google Scholar 

  22. Chase, M.W. et al. JANAF Thermochemical Tables 3rd edn Part II Cr-Zr, 927–1856 (AIP, New York, 1985).

    Google Scholar 

  23. Barin, I., Knacke, O. & Kubaschewski, O. Thermochemical Properties of Inorganic Substances. (suppl.) 1–861 (Springer, Berlin, 1977).

    Google Scholar 

  24. Villars, P. & Calvert, L.D. Pearson's Handbook of Crystallographic Data for Intermetallic Phases 2nd edn (ASM International, Materials Park, Ohio, 1991).

    Google Scholar 

  25. Skorodumova, N.V., Simak, S.I., Lundqvist, B.I., Abrikosov, I.A. & Johansson, B. Quantum origin of the oxygen storage capability of ceria. Phys. Rev. Lett. 89, 166601 (2002).

    Article  CAS  Google Scholar 

  26. Chartier, A., Meis, C., Weber, W.J. & Corrales, L.R. Theoretical study of disorder in Ti-substituted La2Zr2O7 . Phys. Rev. B 65, 134116 (2002).

    Article  Google Scholar 

  27. Martin, P. et al. Oxidation of plutonium dioxide: an X-ray absorption spectroscopy study. J. Nucl. Mater. 320, 138–141 (2003).

    Article  CAS  Google Scholar 

  28. LaVerne, J.A. & Tandon, L. H2 production in the radiolysis of water on CeO2 and ZrO2 . J. Phys. Chem. B 106, 380–386 (2002).

    Article  CAS  Google Scholar 

  29. Connor, J.A. & Ebsworth, E.A.V. Peroxy compounds of transition metals. Advances in Inorganic Chemistry and Radiochemistry vol. 6 (eds Emeleus, H.J. & Sharpe, A.G.) 279–378 (Academic, new York, 1964).

    Google Scholar 

Download references

Acknowledgements

We thank L.R. Morss for providing us with the results of his unpublished work. This work is supported by SKB AB, the Swedish Nuclear Fuel and Waste Management Company, by the Swedish Foundation for Strategic Research (SSF) through the Center of Computational Thermodynamics, and the Inalloy consortia, and by the Swedish Research council (VR). Part of this work is supported by the project OTKA T035043 of the Hungarian Scientific Research Fund, the Hungarian Academy of Science, and the EC Centre of Excellence program (no. ICA1-CT-2000-70029). We thank the Swedish National Infrastructure for Computing for computer resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel A. Korzhavyi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korzhavyi, P., Vitos, L., Andersson, D. et al. Oxidation of plutonium dioxide. Nature Mater 3, 225–228 (2004). https://doi.org/10.1038/nmat1095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1095

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing