Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The formation of sp3 bonding in compressed BN

Abstract

Attributed to their specific atomic bonding, the soft, graphite-like, hexagonal boron nitride (h-BN) and its superhard, diamond-like, cubic polymorph (c-BN) are important technological materials with a wide range of applications1. At high pressure and temperature, h-BN can directly transform to a hexagonal close-packed polymorph (w-BN)2 that can be partially quenched after releasing pressure. Previous theoretical calculations3,4,5 and experimental measurements (primarily on quenched samples)6,7,8,9 provided substantial information on the transition, but left unsettled questions due to the lack of in situ characterization at high pressures. Using inelastic X-ray scattering to probe the boron and nitrogen near K-edge spectroscopy, here we report the first observation of the conversion process of boron and nitrogen sp2- and p-bonding to sp3 and the directional nature of the sp3 bonding. In combination with in situ X-ray diffraction probe, we have further clarified the structure transformation mechanism. The present archetypal example opens two enormous, element-specific, research areas on high-pressure bonding evolutions of boron and nitrogen; each of the two elements and their respective compounds have displayed a wealth of intriguing pressure-induced phenomena10 that result from bonding changes, including metallization11,12, superconductivity13,14, semiconductivity15, polymerization16 and superhardness2,17,18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: IXS B K-edge spectra of BN.
Figure 3: IXS N K-edge spectra of BN.
Figure 4: X-ray diffraction patterns of BN.

Similar content being viewed by others

References

  1. Pouch, J.J. & Alterovitz, S.A. (eds.) Synthesis and Properties of Boron Nitride (Trans Tech, Aedermannsdorf, Switzerland, 1990).

    Google Scholar 

  2. Bundy, F.P. & Wentorf, J.R.H. Direct transformation of hexagonal boron nitride to denser forms. J. Chem. Phys. 38, 1144–1149 (1963).

    Article  CAS  Google Scholar 

  3. Wentzcovitch, R.M. et al. Ab initio study of graphite - diamondlike transitions in BN. Phys. Rev. B 38, 6191–6195 (1988).

    Article  CAS  Google Scholar 

  4. Furthmuller, J., Hafner, J. & Kresse, G. Ab-initio calculation of the structural and electronic-properties of carbon and boron-nitride using ultrasoft pseudopotentials. Phys. Rev. B 50, 15606–15622 (1994).

    Article  CAS  Google Scholar 

  5. Xu, Y.N. & Ching, W.Y. Calculation of ground-state and optical-properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. Phys. Rev. B 44, 7787–7798 (1991).

    Article  CAS  Google Scholar 

  6. Riter, J.R.J. Discussion of shock-induced graphite to wurtzite phase transformation in BN and implications for stacking in graphitic BN. J. Chem. Phys. 59, 1538 (1973).

    Article  CAS  Google Scholar 

  7. Johnson, Q. & Mitchell, A.C. First X-ray diffraction evidence for a phase transition during shock-wave compression. Phys. Rev. Lett. 29, 1369–1371 (1972).

    Article  CAS  Google Scholar 

  8. Pilyankevich, A.N., Kurdyumov, A.V. & Ostrovskaya, N.F. On the crystallographic irreversibility of some phase transformation in boron nitride. Phys. Stat. Sol. A 116, k1–k5 (1989).

    Article  CAS  Google Scholar 

  9. Kurdyumov, A.V. & Oleinik, G.S. Metastable structures of graphite-like boron nitride. Sov. Phys. Crystallogr. 29, 468–469 (1984).

    Google Scholar 

  10. McMillan, P.F. New materials from high-pressure experiments. Nature Mater. 1, 19–25 (2002).

    Article  CAS  Google Scholar 

  11. Mailhiot, C., Grant, J.B. & McMahan, A.K. High pressure metallic phases of boron. Phys. Rev. B 42, 9033–9037 (1990).

    Article  CAS  Google Scholar 

  12. Chau, R. et al. Metallization of fluid nitrogen and the Mott transition in highly compressed low-Z fluid. Phys. Rev. Lett. 90, 245501 (2003).

    Article  CAS  Google Scholar 

  13. Nagamatsu, J. et al. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).

    Article  CAS  Google Scholar 

  14. Eremets, M.I. et al. Superconductivity in boron. Science 293, 272–274 (2001).

    Article  CAS  Google Scholar 

  15. Eremets, M.I. et al. Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability. Nature 411, 170–174 (2001).

    Article  CAS  Google Scholar 

  16. Gregoryanz, E. et al. High-pressure amorphous nitrogen. Phys. Rev. B 64, 502103 (2001).

    Article  Google Scholar 

  17. Wentorf, R.H.J. Cubic form of boron nitride. J. Chem. Phys. 26, 956 (1957).

    Article  CAS  Google Scholar 

  18. Solozhenko, V.L. et al. Synthesis of superhard cubic BC2N. Appl. Phys. Lett. 78, 1385–1387 (2001).

    Article  CAS  Google Scholar 

  19. Bassett, W.A. et al. Hydrothermal diamond anvil cell for XAFS studies of first-row transition elements in aqueous solution up to supercritical conditions. Chem. Geol. 167, 3–10 (2000).

    Article  CAS  Google Scholar 

  20. Watanabe, N. et al. Anisotropy of hexagonal boron nitride core absorption spectra by x-ray Raman spectroscopy. Appl. Phys. Lett. 69, 1370–1372 (1996).

    Article  CAS  Google Scholar 

  21. Saito, S., Higeta, K. & Ichinokawa, T. Intensity analysis of boron and nitrogen K-edge spectra for hexagonal boron-nitride by eels. J. Micros-Oxford 142, 141–151 (1986).

    Article  CAS  Google Scholar 

  22. Harrison, W.A. Electronic Structure and the Properties of Solids (W.H. Freeman and Company, San Francisco, 1980).

    Google Scholar 

  23. Robertson, J. Electronic structure and core exciton of hexagonal boron nitride. Phys. Rev. B 29, 2131–2137 (1984).

    Article  CAS  Google Scholar 

  24. Ma, H. et al. Ab initio Calculation of band-structure, x-ray-emission, quantum yield, and electron-energy-loss spectra of hexagonal boron-nitride. J. Appl. Phys. 73, 7422–7426 (1993).

    Article  CAS  Google Scholar 

  25. Shirley, E.L. Theory and simulation of resonant inelastic x-ray scattering in s-p bonded systems: graphite, hexagonal boron nitride, diamond, and cubic boron nitride. J. Electron Spectrosc. 110–111, 305–321 (2000).

    Article  Google Scholar 

  26. Brown, F.C., Bachrach, R.Z. & Skibowski, M. Effect of x-ray polarization at the boron K edge in hexagonal BN. Phys. Rev. B 13, 2633–2635 (1976).

    Article  CAS  Google Scholar 

  27. Leapman, R.D. & Silcox, J. Orientation dependence of core edges in electron-energy-loss spectra from anisotropic materials. Phys. Rev. Lett. 42, 1361–1364 (1979).

    Article  CAS  Google Scholar 

  28. Jayawardane, D.N. et al. Cubic boron nitride: Experimental and theoretical energy-loss near-edge structure. Phys. Rev. B 64, 115107 (2001).

    Article  Google Scholar 

  29. Mao, W. et al. Bonding changes in compressed graphite. Science 302, 425–427 (2003).

    Article  CAS  Google Scholar 

  30. Yagi, T. et al. High-Pressure in situ x-ray-diffraction study of the phase-transformation from graphite to hexagonal diamond at room-temperature. Phys. Rev. B 46, 6031–6039 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank GSECARS, HPCAT, APS and the National Synchrotron Light Source (NSLS) for beam time and J. Hu for help with the x-ray diffraction experiment conducted at the beamline X17C of NSLS. Use of the HPCAT facility was supported by the US Department of Energy (DOE)-Basic Energy Sciences, DOE-National Nuclear Security Administration, NSF, Department of Defense-Tank-Automotive and Armaments Command, and the W.M. Keck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Meng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Y., Mao, Hk., Eng, P. et al. The formation of sp3 bonding in compressed BN. Nature Mater 3, 111–114 (2004). https://doi.org/10.1038/nmat1060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1060

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing