Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites


Defects exist in almost all materials1 and defect engineering at the atomic level is part of modern semiconductor technology2,3. Defects and their long-range strain fields can have a negative impact on the host materials4,5. In materials with confined dimensions, the influence of defects can be even more pronounced due to the enhanced relative volume of the 'defective' regions. Here we report the dislocation-induced polarization instability of (001)-oriented Pb(Zr0.52Ti0.48)O3 (PZT) nanoislands, with an average height of 9 nm, grown on compressive perovskite substrates. Using quantitative high-resolution electron microscopy4, we visualize the strain fields of edge-type misfit dislocations, extending predominantly into a PZT region with a height of 4 nm and width of 8 nm. The lattice within this region deviates from the regular crystal structure. Piezoresponse force microscopy indicates that such PZT nanoislands do not show ferroelectricity. Our results suggest that misfit engineering is indispensable for obtaining nanostructured ferroelectrics with stable polarization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Cross-sectional and plan-view micrographs and calculated contrasts of the PZT nanoislands.
Figure 2: Geometric phase analysis of a misfit dislocation in a PZT nanoisland.
Figure 3: Quantitative measurements of long-range strain fields of the misfit dislocations along [100] and [001] axes using geometric phase analysis.
Figure 4: Local piezoelectric hysteresis loops measured by PFM.


  1. 1

    Stoneham, A.M. Theory of Defects in Solids (Clarendon, Oxford, 1985).

    Google Scholar 

  2. 2

    Ebert, Ph. et al. Thermal formation of Zn-dopant-vacancy defect complexes on InP(110) surfaces. Phys. Rev. B 53, 4580–4590 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Estreicher, S.K. Defect theory: Elusive state-of-the-art. Mater. Today 6, 26–35 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Hÿtch, M.J., Putaux, J.-L. & Pénisson, J.-M. Measurement of the displacement field of dislocations to 0.03Å by electron microscopy. Nature 423, 270–273 (2003).

    Article  Google Scholar 

  5. 5

    Neumark, G.F. New model for interface charge-carrier mobility: The role of misfit dislocations. Phys. Rev. Lett. 21, 1252–1256 (1968).

    CAS  Article  Google Scholar 

  6. 6

    Wurfel, P., Batra, I.P. & Jacobs, J.T. Polarization instability in thin ferroelectric films. Phys. Rev. Lett. 30, 1218–1221 (1973).

    CAS  Article  Google Scholar 

  7. 7

    Batra, I.P., Wurfel, P. & Silverman, B.D. Phase transition, stability, and depolarization field in ferroelectric thin films. Phys. Rev. B 8, 3257–3265 (1973).

    CAS  Article  Google Scholar 

  8. 8

    Bune, A.V. et al. Two-dimensional ferroelectric films. Nature 391, 874–877 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Tybell, T., Ahn, C.H. & Triscone, J.-M. Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856–858 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Roelofs, A., Schneller, T., Szot, K. & Waser, R. Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity. Appl. Phys. Lett. 81, 5231–5233 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Kohlstedt, H., Pertsev, N.A. & Waser, R. Size effects on polarization in epitaxial ferroelectric films and the concept of ferroelectric tunnel junctions including first results. Mat. Res. Soc. Symp. Proc. 688, 161–172 (2002).

    CAS  Google Scholar 

  12. 12

    Ghosez, Ph. & Rabe, K.M. Microscopic model of ferroelectricity in stress-free PbTiO3 ultrathin films. Appl. Phys. Lett. 76, 2767–2769 (2000).

    CAS  Article  Google Scholar 

  13. 13

    Meyer, B. & Vanderbilt, D. Ab initio study of BaTiO3 and PbTiO3 surfaces in external electric fields. Phys. Rev. B 63, 205426 (2001).

    Article  Google Scholar 

  14. 14

    Zembilgotov, A.G., Pertsev, N.A., Kohlstedt, H. & Waser, R. Ultrathin epitaxial ferroelectric films grown on compressive substrates: Competition between the surface and strain effects. J. Appl. Phys. 91, 2247–2254 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Pertsev, N.A., Kukhar, V.G., Kohlstedt, H. & Waser, R. Phase diagrams and physical properties of single-domain epitaxial Pb(Zr1−xTix)O3 thin films. Phys. Rev. B 67, 054107 (2003).

    Article  Google Scholar 

  16. 16

    Junquera, J. & Ghosez, Ph. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Li, S. et al. Size effects in nanostructured ferroelectrics. Phys. Lett. A 212, 341–346 (1996).

    CAS  Article  Google Scholar 

  18. 18

    Pöykkö, S. & Chadi, D.J. Dipolar defect model for fatigue in ferroelectric perovskites. Phys. Rev. Lett. 83, 1231–1234 (1999).

    Article  Google Scholar 

  19. 19

    Chu, M.-W., Ganne, M., Caldes, M.T., Gautier, E. & Brohan, L. X-ray photoemission spectroscopy characterization of the electrode-ferroelectric interfaces in Pt/Bi4Ti3O12/Pt and Pt/Bi3.25La0.75Ti3O12/Pt capacitors: Possible influence of defect structure on fatigue properties. Phys. Rev. B 68, 014102 (2003).

    Article  Google Scholar 

  20. 20

    Szafraniak, I., Harnagea, C., Scholz, R., Hesse, D. & Alexe, M. Ferroelectric epitaxial nanocrystals obtained by a self-patterning method. Appl. Phys. Lett. 83, 2211–2213 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Waser, R., Schneller, T., Hoffmann-Eifert, S. & Ehrhart, P. Advanced chemical deposition techniques − from research to production. Integ. Ferroelect. 36, 3–20 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Stemmer, S., Streiffer, S.K., Ernst, F. & Rühle, M. Dislocations in PbTiO3 thin films. Phys. Stat. Sol. A 147, 135–154 (1995).

    CAS  Article  Google Scholar 

  23. 23

    Watanabe, Y., Okano, M. & Masuda, A. Surface conduction on insulating BaTiO3 crystal suggesting an intrinsic surface electron layer. Phys. Rev. Lett. 86, 332–335 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Kakegawa, K., Mohri, J., Takahashi, T., Yamamura, H. & Shirasaki, S. A compositional fluctuation and properties of Pb(Zr,Ti)O3 . Solid State Commun. 24, 769–772 (1977).

    CAS  Article  Google Scholar 

  25. 25

    Hellwege, K.-H. (ed.). Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology (Springer, Berlin), Group III: Crystal and Solid State physics 1, 66 (1966); 3, 427 (1969); 16, 64 (1981).

    Google Scholar 

  26. 26

    Matthews, J.W. & Blakeslee, A.E. Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974).

    CAS  Google Scholar 

  27. 27

    Suzuki, T., Takeuchi, S. & Yoshinaga, H. Dislocation Dynamics and Plasticity (Springer, Berlin, 1991).

    Google Scholar 

  28. 28

    Hÿtch, M.J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  Google Scholar 

  29. 29

    Jia, C.L. et al. Lattice strain and lattice expansion of the SrRuO3 layers in SrRuO3/PbZr0.52Ti0.48O3/SrRuO3 multilayer thin films. J. Appl. Phys. 92, 101–105 (2002).

    CAS  Article  Google Scholar 

Download references


Part of this work was supported by Volkswagen Stiftung in the project 'Nano-sized Ferroelectric Hybrids' under the contract No. 5/77737, and part by DFG via FOR 404.

Author information



Corresponding author

Correspondence to Ming-Wen Chu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chu, MW., Szafraniak, I., Scholz, R. et al. Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nature Mater 3, 87–90 (2004).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing