Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Nanocrystalline metals

Mapping plasticity

The strength of polycrystalline materials is well known to increase with decreasing grain size. Below a certain 'strongest size' however, this behaviour is reversed. Mapping the deformation mechanisms in nanoscale materials by molecular dynamics simulation clarifies why.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the operational deformation mechanisms in nanocrystalline f.c.c. metals with grain size d during low-temperature deformation under a stress σ.
Figure 2: Evidence for a 'strongest grain size' in the plastic deformation of nanocrystals obtained by molecular dynamics simulations and experimental work.

a, adapted from ref. 7. Copyright © 2003 Taylor & Francis Ltd. b, adapted from ref. 8. Copyright © 2003 AAAS. c, adapted from ref. 9. Copyright © 2003 American Institute of Physics.

References

  1. Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K. & Gleiter, H. Nature Mater. 3, 43–47 (2004).

    Article  CAS  Google Scholar 

  2. Weertman, J.R. in Nanostructured Materials: Processing, Properties and Applications (ed. C.C. Koch) 397 (William Andrews, Norwich, New York, 2002).

    Google Scholar 

  3. Schiotz, J., DiTolla, F.D. & Jacobson, K.W. Nature 391, 561–563 (1998).

    Article  Google Scholar 

  4. Nieh, T.G. & Wadsworth, J. Scripta Met. Mater. 25, 955–958 (1991).

    Article  CAS  Google Scholar 

  5. Yip, S. Nature 391, 532–533 (1998).

    Article  CAS  Google Scholar 

  6. Cheng, S., Spencer, J.A. & Milligan, W.W. Acta Mater. 51, 4505 (2003).

    Article  CAS  Google Scholar 

  7. Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, M.K. & Gleiter, H. Phil. Mag. Lett. 83, 385–393 (2003).

    Article  CAS  Google Scholar 

  8. Schiotz, J. & Jacobsen, K.W. Science 301, 1357–1359 (2003).

    Article  CAS  Google Scholar 

  9. Van Vliet, K.J., Tsikata, S. & Suresh, S. Appl. Phys. Lett. 83, 1441–1443 (2003).

    Article  CAS  Google Scholar 

  10. Chen, M. et al. Science 300, 1275–1277 (2003).

    Article  CAS  Google Scholar 

  11. Yamakov, V., Wolf, D., Phillpot, S., Mukherjee, A.K. & Gleiter, H. Nature Mater. 1, 45–48 (2002).

    Article  CAS  Google Scholar 

  12. Ogata, S., Li, J. & Yip, S. Science 298, 807–811 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yip, S. Mapping plasticity. Nature Mater 3, 11–12 (2004). https://doi.org/10.1038/nmat1053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing