Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization

Abstract

Mesoporous materials are of technological interest because of their applications ranging from catalysts, molecular sieves, separation technology and gas sensors, to batteries and electronics1,2,3,4. Here we demonstrate a synthetic methodology that allows us to create an ordered mesoporous nanocomposite with a crystalline oxide framework. We design a 'nanocrystal–glass' configuration to build a nanoarchitecture by means of surfactant-templated self-assembly followed by the controlled in-situ crystallization of materials. Functional nanocrystals are used as the building blocks of ordered mesopores, and the glass phase can act both as the 'glue' between nanocrystals and as a functionalized component in the composites. Specifically, we demonstrate this methodology for ordered mesoporous nanocomposites consisting of electrochemically active nanocrystals and semiconductive glass in the TiO2–P2O5–MxOy systems (where M is a metal ion). This approach could be applied to many other multicomponent oxides to fabricate mesoporous nanocomposites for numerous uses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Target structure of designed mesoporous nanocomposite.
Figure 2: Powder X-ray diffraction patterns.
Figure 3: BET measurements.
Figure 4: Representative TEM images.
Figure 5: Powder X-ray diffraction patterns and TEM images.

Similar content being viewed by others

References

  1. Davis, M.E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    Article  CAS  Google Scholar 

  2. Yamata, T. et al. Surface photo voltage NO gas sensing properties dependent on the structure of self ordered mesoporous silicate film. Adv. Mater. 14, 812–815 (2002).

    Article  Google Scholar 

  3. Kavan, L., Rathousky, J., Gratzel, M., Shklover, V. & Zukal, A. Mesoporous thin film TiO2 electrodes. Micro. Meso. Mater. 44–45, 653–659 (2001).

    Article  Google Scholar 

  4. Miller, R.D. In search of low-k dielectrics. Science 286, 421–423 (1999).

    Article  CAS  Google Scholar 

  5. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C. & Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  CAS  Google Scholar 

  6. Attard, G.S., Glyde, J.C. & Goltner, C.G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature 378, 366–378 (1995).

    Article  CAS  Google Scholar 

  7. Zhao, D. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    Article  CAS  Google Scholar 

  8. Templin, M. et al. Organically modified aluminosilicate mesostructures from block copolymer phases. Science 278, 1795–1798 (1997).

    Article  CAS  Google Scholar 

  9. Bhaumik, A. & Inagaki, S. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. J. Am. Chem. Soc. 123, 691–696 (2001).

    Article  CAS  Google Scholar 

  10. Tian, B. et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs. Nature Mater. 2, 159–163 (2003).

    Article  CAS  Google Scholar 

  11. Attard, G.S. et al. Science 278, 838–841 (1997).

    Article  CAS  Google Scholar 

  12. Bartlett, P.N., Birkin, P.N., Ghanem, M.A., de Groot, P. & Sawicki, M. The electrochemical deposition of nanostructured Ccobalt film from lyotropic liquid crystalline media. J. Electrochem. Soc. 148, C119–C123 (2001).

    Article  CAS  Google Scholar 

  13. Tressler, J.F., Alkoy, S., Dogan, A. & Newnham, R.E. Functional composites for sensors, actuators and transducers. Composites A 30, 477–482 (1997).

    Article  Google Scholar 

  14. Zen, H., Li, J., Liu, J.P., Wang, Z.L. & Sun, S. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420, 395–398 (2002).

    Article  Google Scholar 

  15. Yang, P., Zhao, D., Margolese, D.I., Chmelka, B.F. & Stucky, G.D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998).

    Article  CAS  Google Scholar 

  16. Lee, B., Lu, D., Kondo, J.N. & Domen, K. Three-dimensionally ordered mesoporous niobium oxide. J. Am. Chem. Soc. 124, 11256–11257 (2002).

    Article  CAS  Google Scholar 

  17. Hwang, Y.K., Lee, K.-C. & Kwon, Y.-U. Nanoparticle route to mesoporous titania thin films. Chem. Commun. 1738–1739 (2001).

  18. Yun, H.S., Miyazawa, K., Zhou, H.S., Honma, I. & Kuwabara, M. Synthesis of mesoporous thin TiO2 films with hexagonal pore structure using triblock copolymer templates. Adv. Mater. 13, 1377–1380 (2001).

    Article  CAS  Google Scholar 

  19. Mcmillan, P.W. Glass-Ceramics (Academic, London, 1979).

    Google Scholar 

  20. Gaskell, P.H. Structure, glass formation and properties. J. Non-Crystal. Solids 192/193, 9–22 (1995).

    Article  Google Scholar 

  21. Lu, Y. et al. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature 410, 913–917 (2001).

    Article  CAS  Google Scholar 

  22. Inagaki, S., Guan, S., Ohsuna, T. & Terasaki, O. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature 416, 304–307 (2002).

    Article  CAS  Google Scholar 

  23. Li, D., Kong, L., Zhang, L. & Yao, X. Sol-gel preparation and characterization of transparent KTiOPO4/SiO2 nanocomposite glass for second harmonic generation. J. Non-Cryst. Solids 271, 45–55 (2000).

    Article  CAS  Google Scholar 

  24. James, P.F., Iqbal, Y., Jais, U.S., Jordery, S. & Lee, W.E. Crystallisation of silicate and phosphate glasses. J. Non-Cryst. Solids 219, 17–29 (1997).

    Article  CAS  Google Scholar 

  25. Pinckney, L.R. & Beall, G.H. Nanocrystalline non-alkali glass-ceramics. J. Non-Cryst. Solids 219, 219–227 (1997).

    Article  CAS  Google Scholar 

  26. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  27. O'Regan, B. & Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film. Nature 353, 737–739 (1991).

    Article  CAS  Google Scholar 

  28. Bach, U. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998).

    Article  CAS  Google Scholar 

  29. Wagemaker, M., Kentgens, A.P.M. & Mulder, F.M. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 418, 397–399 (2002).

    Article  CAS  Google Scholar 

  30. Talavera, R.R., Vargas, S., Arroyo-Murillo, R., Montiel-Campos, R. & Haro-Poniatowski, E. Modification of the phase transition temperatures in titania doped with various cations. J. Mater. Res. 12, 439–443 (1997).

    Article  Google Scholar 

  31. Schmutz, C. et al. EXAFS, Raman and 31P NMR study of amorphous titanium phosphates. J. Non-Cryst. Solids 170, 250–262 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.L. acknowledges the financial support of the Japanese Society of the Promotion of Science (JSPS) Fellowship for work carried out at the Energy Electronics Institute, AIST. H.Z. thanks M. Ichihara for help in TEM observations, and acknowledges partial research funding from JSPS, Japan Science and Technology Agency, AIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoshen Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Zhou, H. & Honma, I. Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization. Nature Mater 3, 65–72 (2004). https://doi.org/10.1038/nmat1043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1043

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing