Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Encoding crystal microstructure and chain folding in the chemical structure of synthetic polymers

Abstract

The development of robust methodologies to control the solid-state structure of polymeric materials by appropriate design of the macromolecular architecture has a crucial impact on the mechanical properties of these materials1,2. Here, we demonstrate the feasibility of controlling chain folding of polymers by steric interactions only, in contrast to previous attempts aimed at engineering polymer crystallization through hydrogen bonding3,4. In a linear synthetic macromolecule similar to polyethylene, we encoded structural instructions that are translated during a crystallization process to generate a unique, semi-crystalline morphology with structure-controlled crystal thickness of 5 nm that remains constant over a wide temperature range. The molecular code consists of a linear backbone alternating crystallizable, long alkyl sequences of monodisperse sizes separated by short spacers containing side-chains and acting as stops and fold-controlling units. This simple strategy could be used to produce advanced polymeric materials with fine control of the crystalline and amorphous regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural data on the polymers of this study.
Figure 3: Morphology of P44/5-Prop crystals.
Figure 2: Micrographs of the lamellar structure of P44/5-Prop recorded at different temperatures.

Similar content being viewed by others

References

  1. Mercier, J.P., Zambelli, G. & Kurz, W. Introduction à la Science des Matériaux (Presses Polytechniques et Universitaires Romandes, Lausanne, 1999).

    Google Scholar 

  2. Lin, L. & Argon, A.S. Structure and plastic deformation of polyethylene. J. Mater. Sci. 29, 294–323 (1994).

    Article  CAS  Google Scholar 

  3. Krejchi, M.T. et al. Chemical sequence control of beta-sheet assembly in macromolecular crystals of periodic polypeptides. Science 265, 1427–1432 (1994).

    Article  CAS  Google Scholar 

  4. Rathore, O. & Sogah, D.Y. Self-assembly of beta-sheets into nanostructures by poly(alanine) segments incorporated in multiblock copolymers inspired by spider silk. J. Am. Chem. Soc. 123, 5231–5239 (2001).

    Article  CAS  Google Scholar 

  5. Wunderlich, B. Macromolecular Physics Vol.1: Crystal Structure, Morphology, Defects (Academic, New York, 1973).

    Google Scholar 

  6. Bassett, D.C. Electron microscopy and spherulitic organization in polymers. CRC Crit. Rev. Solid State Mater. Sci. 12, 97–163 (1984).

    Article  CAS  Google Scholar 

  7. Mandelkern, L. Relation between properties and molecular morphology of semicrystalline polymers. Faraday Discuss. 68, 310–319 (1979).

    Article  Google Scholar 

  8. Gautam, S., Balijepalli, S. & Rutledge, G.C. Molecular simulations of the interlamellar phase in polymers: Effect of chain tilt. Macromolecules 33, 9136–9145 (2000).

    Article  CAS  Google Scholar 

  9. Lehn, J.-M. Supramolecular Chemistry (VCH, Weinheim, 1995).

    Book  Google Scholar 

  10. Ungar, G. & Zeng, K.B. Learning polymer crystallization with the aid of linear, branched and cyclic model compounds. Chem. Rev. 101, 4157–4188 (2001).

    Article  CAS  Google Scholar 

  11. Galin, J.-C., Spegt, P., Suzuki, S. & Skoulios, A. Crystallization of segmented poly(oxyethylene)s. Makromol. Chem. 175, 991–1000 (1974).

    Article  CAS  Google Scholar 

  12. Lee, S.-W. et al. Isothermal thickening and thinning processes in low molecular weight poly(ethylene oxide) fractions crystallized from the melt.5. Effect of chain defects. Macromolecules 29, 8816–8823 (1996).

    Article  CAS  Google Scholar 

  13. Ungar, G., Zeng, X., Brooke, G.M. & Mohammed, S. Structure and formation of noninteger and integer folded-chain crystals of linear and branched monodisperse ethylene oligomers. Macromolecules 31, 1875–1879 (1998).

    Article  CAS  Google Scholar 

  14. Lotz, B., Kovacs, A.J., Bassett, G.A. & Keller, A. Properties of copolymers composed of one poly(ethylene oxide) and one polystyrene block. II. Morphology of single crystals. Koll. Z. Z. Polym. 209, 115–128 (1966).

    Article  CAS  Google Scholar 

  15. Yeates, S.G. & Booth, C. Chain folding in oligo(oxyethylene)s. A study of the C1, C10, C13, C15, C18 and C21 dialkyl ethers of pentatetracontaethylene glycol. Makromol. Chem. 186, 2663–2674 (1985).

    Article  CAS  Google Scholar 

  16. Rangarajan, P. et al. Dynamics of structure formation in crystallizable block-copolymers. Macromolecules 28, 1422–1428 (1995).

    Article  CAS  Google Scholar 

  17. Winningham, M.J. & Sogah, D.Y. A modular approach to polymer architecture control via catenation of prefabricated biomolecular segments: Polymers containing parallel beta-sheets templated by a penoxathiin-based reverse turn mimic. Macromolecules 30, 862–876 (1997).

    Article  CAS  Google Scholar 

  18. Le Fevere de Ten Hove, C. Controlling Solid-State Microstructure of Semi-Crystalline Polymers Through Chemical Design of Chains: A Study of Model Polyesters Thesis, Univ. Catholique de Louvain, Louvain-la-Neuve (2001).

    Google Scholar 

  19. Hosoda, S., Nomura, H., Gotoh, Y. & Kihara, H. Degree of branch inclusion into the lamellar crystal for various ethylene/α-olefin copolymers. Polymer 31, 1999–2005 (1990).

    Article  CAS  Google Scholar 

  20. Abrahamsson, S., Dahlén, B., Löfgren, H. & Pascher, I. Lateral packing of hydrocarbon chains. Prog. Chem. 16, 125–143 (1978).

    CAS  Google Scholar 

  21. Koenig, J.L. Spectroscopy of Polymers (American Chemical Society, Washington, DC, 1992).

    Google Scholar 

  22. Small, D.M. The Physical Chemistry of Lipids. From Alkanes to Phospholipids (Handbook of Lipid Research Vol. 4, Plenum, New York, 1986).

    Book  Google Scholar 

  23. Basire, C. & Ivanov, D.A. Evolution of the lamellar structure during crystallization of a semicrystalline-amorphous polymer blend: time-resolved hot-stage SPM study. Phys. Rev. Lett. 85, 5587–5590 (2000).

    Article  CAS  Google Scholar 

  24. Cowley, J.M. Diffraction Physics 2nd edn (North-Holland, Amsterdam, 1981).

    Google Scholar 

  25. Balt´-Calleja, F.J. & Vonk, C.G. X-Ray Scattering of Synthetic Polymers (Polymer Science Library, Vol. 8, Elsevier, Amsterdam, 1989).

    Google Scholar 

  26. Armistead, K. & Goldbeck-Wood, G. Polymer crystallization theories. Adv. Polym. Sci. 100, 219–312 (1992).

    Article  Google Scholar 

  27. Strobl, G. The Physics of Polymers: Concepts for Understanding their Structures and Behavior (Springer, Berlin, 1996).

    Book  Google Scholar 

  28. Magonov, S.N., Yerina, N.A., Ungar, G., Reneker, D.H. & Ivanov, D.A. Visualization of lamellar thickening during thermal annealing of single crystals of ultra long alkane C390H782 and polyethylene. Macromolecules 36, 5637–5649 (2003).

    Article  CAS  Google Scholar 

  29. Broadhurst, M.G. Extrapolation of the orthorhombic n-paraffin melting properties to very long chain lengths. J. Chem. Phys. 36, 2578–2582 (1962).

    Article  CAS  Google Scholar 

  30. Leung, W.M., Manley, R. St. J. & Panaras, A.R. Isothermal growth of low molecular weight polyethylene single crystals from solution. 2. Melting and dissolution behavior. Macromolecules 18, 753–759 (1985).

    Article  CAS  Google Scholar 

  31. Jonas, A.M., Ivanov, D.A. & Yoon, D.Y. The semi-crystalline morphology of poly(ether-ether-ketone) blends with poly(ether-imide). Macromolecules 31, 5352–5362 (1998).

    Article  CAS  Google Scholar 

  32. Haubruge, H.G., Gallez, X.A., Nysten, B. & Jonas, A.M. Image analysis of transmission electron micrographs of semicrystalline polymers: a comparison with X-Ray scattering results. J. Appl. Cryst. 36, 1019–1025 (2003).

    Article  CAS  Google Scholar 

  33. Ivanov, D.A., Pop, T., Yoon, D. & Jonas, A.M. Direct space detection of order-disorder interphases at crystalline-amorphous boundaries in a semicrystalline polymer. Macromolecules 35, 9813–9818 (2002).

    Article  CAS  Google Scholar 

  34. Ivanov, D.A., Daniels, R. & Magonov, S. Exploring the High-Temperature AFM and its use for Studies of Polymers 1–12 (Digital Instruments/Veeco Metrology Group Application Note, Santa Barbara, 2001).

    Google Scholar 

  35. Ono, N., Kitamura, K., Nakajima, K. & Shimanuki, Y. Measurement of Young's modulus of silicon single crystal at high temperature and its dependency on boron concentration using the flexural vibration method. Jpn J. Appl. Phys. 39, 368–371 (2000).

    Article  CAS  Google Scholar 

  36. Ivanov, D.A., Amalou, Z. & Magonov, S.N. Real-time evolution of the lamellar organization of poly(ethylene terephthalate) during crystallization from the melt: High-temperature atomic force microscopy study. Macromolecules 34, 8944–8952 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to S. Magonov (Veeco) for providing support with the AFM experiments, Digital Instruments/Veeco Metrology Group for supporting a visit of D.A.I. to Santa Barbara, P. Lipnik (UCL) for her help with the TEM experiments, and the CERTECH company (Seneffe, Belgium) for the SEC analysis. This work was funded by the Fonds Spéciaux de Recherche of the Université catholique de Louvain, the Interuniversity Attraction Poles of the Federal Government of Belgium, the Fonds National de la Recherche Scientifique (Belgium), and the UMass-NSF Materials Research Science and Engineering Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacques Penelle or Alain M. Jonas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Ten Hove, C., Penelle, J., Ivanov, D. et al. Encoding crystal microstructure and chain folding in the chemical structure of synthetic polymers. Nature Mater 3, 33–37 (2004). https://doi.org/10.1038/nmat1028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing