Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complex and oriented ZnO nanostructures

Abstract

Extended and oriented nanostructures are desirable for many applications, but direct fabrication of complex nanostructures with controlled crystalline morphology, orientation and surface architectures remains a significant challenge. Here we report a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology. Using controlled seeded growth and citrate anions that selectively adsorb on ZnO basal planes as the structure-directing agent, we prepared large arrays of oriented ZnO nanorods with controlled aspect ratios, complex film morphologies made of oriented nanocolumns and nanoplates (remarkably similar to biomineral structures in red abalone shells) and complex bilayers showing in situ column-to-rod morphological transitions. The advantages of some of these ZnO structures for photocatalytic decompositions of volatile organic compounds were demonstrated. The novel ZnO nanostructures are expected to have great potential for sensing, catalysis, optical emission, piezoelectric transduction, and actuations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM images of large arrays of oriented ZnO nanorods formed by seeded growth without the addition of citrate.
Figure 2: ZnO growth as a function of time.
Figure 3: ZnO crystal morphology as a function of citrate concentrations.
Figure 4: Control of aspect ratio of large arrays of oriented ZnO rods through secondary and tertiary growths in the presence of citrate.
Figure 5: Oriented biomimetic ZnO nanostructures.
Figure 6: Representative TEM results of the ZnO nanostructures.

Similar content being viewed by others

References

  1. Li, W.Z. et al. Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996).

    Article  CAS  Google Scholar 

  2. Ren, Z.F. et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998).

    Article  CAS  Google Scholar 

  3. Huang, M.H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    Article  CAS  Google Scholar 

  4. Wu, Y. et al. Inorganic semiconductor nanowires: rational growth, assembly, and novel properties. Chem. Eur. J. 8, 1260–1268 (2002).

    Article  CAS  Google Scholar 

  5. Huang, M.H. et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113–116 (2001).

    Article  CAS  Google Scholar 

  6. Lyu, S.C. et al. Catalytic growth of zinc oxide nanowires by vapor transport. Chem. Phys. Lett. 363, 134–138 (2002).

    Article  CAS  Google Scholar 

  7. Wu, J.J. & Liu, S.C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater. 14, 215–218 (2002).

    Article  CAS  Google Scholar 

  8. Liu, S.C. & Wu, J.J. Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si. J. Mater. Chem. 10, 3125–3129 (2002).

    Article  Google Scholar 

  9. Park, W.I., Kim, D.H., Jung, S.W. & Yi, S.C. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanowires. Appl. Phys. Lett. 80, 4232–4234 (2002).

    Article  CAS  Google Scholar 

  10. Lee, C.J. et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81, 3648–3650 (2002).

    Article  CAS  Google Scholar 

  11. Yu, D.P. et al. Controlled growth of oriented amorphous silicon nanowires via a solid–liquid–solid (SLS) mechanism. Physica E 9, 305–309 (2001).

    Article  CAS  Google Scholar 

  12. Chen, L.C. et al. Catalyst-free and controllable growth of SiCxNy nanorods. J. Phys. Chem. Solids 62, 1567–1576 (2001).

    Article  CAS  Google Scholar 

  13. Pan, Z.W., Dai, Z.R. & Wang, Z.L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001).

    Article  CAS  Google Scholar 

  14. Vayssieres, L., Keis, K., Hagfeldt, A. & Lingdquist, S.E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 13, 4395–4398 (2001).

    Article  CAS  Google Scholar 

  15. Vayssieres, L., Keis, K., Lingdquist, S.E. & Hagfeldt, A. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J. Phys. Chem. B 105, 3350–3352 (2001).

    Article  CAS  Google Scholar 

  16. Li, Y., Meng, G.W., Zhang, L.D. & Phillipp, F. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 76, 2011–2013 (2000).

    Article  CAS  Google Scholar 

  17. Li, Y., Cheng, G.S. & Zhang, L.D. Fabrication of highly ordered ZnO nanowire arrays in anodized alumina. J. Mater. Res. 15, 2305–2308 (2000).

    Article  CAS  Google Scholar 

  18. Wang, Y.C., Leu, I.C. & Hon, M.H. Preparation of nanosized ZnO arrays by electrophoretic deposition. Electrochem. Solid State Lett. 5, C53–C55 (2002).

    Article  CAS  Google Scholar 

  19. Wang, Y.C., Leu, I.C. & Hon, M.H. Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties. J. Cryst. Growth 237, 564–568 (2002).

    Article  Google Scholar 

  20. Look, D.C. Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 80, 383–387 (2001).

    Article  Google Scholar 

  21. Huang, Y.Q., Liu, M.D., Zeng, Y.K. & Liu, S.B. Progress of study on ZnO thin films and its properties. J. Inorg. Mater. 16, 391–397 (2001).

    CAS  Google Scholar 

  22. Kind, H., Yan, H., Messer, B., Law, M. & Yang, P. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14, 158–160 (2002).

    Article  CAS  Google Scholar 

  23. Wu, Y., Yan, H. & Yang, P. Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics. Top. Catal. 19, 197–202 (2002).

    Article  CAS  Google Scholar 

  24. Gordillo, G. New materials used as optical window in thin film solar cells. Surf. Rev. Lett. 9, 1675–1680 (2002).

    Article  CAS  Google Scholar 

  25. Lin, C.H., Chiou, B.S., Chang, C.H. & Lin, J.D. Preparation and cathodoluminescence of ZnO phosphor. Mater. Chem. Phys. 77, 647–654 (2003).

    Article  CAS  Google Scholar 

  26. Martin, P.M., Good, M.S., Johnston, J.W., Bond, L.J. & Crawford, S.L. Piezoelectric films for 100-MHz ultrasonic transducers. Thin Solid Films 379, 253–258 (2000).

    Article  CAS  Google Scholar 

  27. Muthukumar, S., Gorla, C.R., Emanetoglu, N.W., Liang, S. & Lu, Y. Control of morphology and orientation of ZnO thin films on SiO2/Si substrates. J. Cryst. Growth 225, 197–201 (2001).

    Article  CAS  Google Scholar 

  28. Leviinson, L.M. & Philipp, H.R. in Ceramic Materials for Electronics (ed. Buchanan, R.C.) 349–378 (Marcel Dekker, New York, 1991).

    Google Scholar 

  29. Xu, J.Q., Pan, Q.Y., Shun, Y.A. & Tian, Z.Z. Grain size control and gas properties of ZnO gas sensors. Sensors Actuators B: Chem. 66, 277–279 (2000).

    Article  CAS  Google Scholar 

  30. Pal, B. & Sharon, M. Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol-gel process. Mater. Chem. Phys. 76, 82–87 (2002).

    Article  CAS  Google Scholar 

  31. Tian, Z.R., Voigt, J.A., Liu, J., Mckenzie, B. & Mcdermott, M.J. Biomimetic arrays of oriented helical ZnO nanorods and columns. J. Am. Chem. Soc. 124, 12954–12955 (2002).

    Article  CAS  Google Scholar 

  32. Liu, J. et al. Templateless assembly of molecularly aligned conductive polymer nanowires: a new approach for oriented nanostructures. Chem. Eur. J. 9, 604–611 (2003).

    Article  CAS  Google Scholar 

  33. Greene, L.E. et al. Low temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Edn 42, 3031–3034 (2003).

    Article  CAS  Google Scholar 

  34. Jolivet, J.P., Gzara, M., Mazieres, J. & Lefebvre, J. Physicochemical study of aggregation in silver colloids. J. Colloid Interface Sci. 107, 429–441 (1985).

    Article  CAS  Google Scholar 

  35. López-Macipe, A., Gómez-Morales, J. & Rodríguez-Clemente, R. The role of pH in the adsorption of citrate on hydroxyapatite. J. Colloid Interface Sci. 200, 114–120 (1998).

    Article  Google Scholar 

  36. Hidber, P.C., Graule, T.J. & Gauckler, L.J. Citric acids: a dispersant for aqueous alumina suspensions. J. Am. Ceram. Soc. 79, 1857–1867 (1996).

    Article  CAS  Google Scholar 

  37. Biggs, S., Scales, P.J., Leong, Y.K. & Healy, T.W. Effects of citrate adsorption on the interactions between zirconia surfaces. J. Chem. Soc. Faraday Trans. 91, 2921–2928 (1995).

    Article  CAS  Google Scholar 

  38. Liu, C. & Huang, P.M. Atomic force microscopy and surface characteristics of iron oxides formed in citrate solutions. Soil. Sci. Soc. Am. J. 63, 65–72 (1999).

    Article  CAS  Google Scholar 

  39. Sato, K., Furukawa, Y. & Nakajima, K. (eds) Advances in Crystal Growth Research (Weizmann Institute of Science, Rehovot, Israel, 2001).

    Google Scholar 

  40. Taubert, A., Glasser, G. & Palms, D. Kinetics and particle formation mechanism of zinc oxide in polymer-controlled precipitation from aqueous solution. Langmuir 18, 4488–4494 (2002).

    Article  CAS  Google Scholar 

  41. Taubert, A., Palms, D., Weiss, ö., Piccini, M.T. & Batchelder, D.N. Polymer-assisted control of particle morphology and particle size of zinc oxide precipitated from aqueous solution. Chem. Mater. 14, 2594–2601 (2002).

    Article  CAS  Google Scholar 

  42. Taubert, A., Kübel, C. & Martin, D.C. Polymer-induced microstructure variation in zinc oxide crystals precipitated from aqueous solution. J. Phys. Chem. B 107, 2660–2666 (2003).

    Article  CAS  Google Scholar 

  43. Jackson, A.P., Vincent, J.F.V. & Turner, R.M. The mechanical design of nacre. Proc. R. Soc. Lond. B 234, 415–440 (1988).

    Article  Google Scholar 

  44. Belcher, A.M. et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381, 56–58 (1996).

    Article  CAS  Google Scholar 

  45. Liang, L., Liu, J., Windisch, C.F. Jr, Exarhos, G.J. & Lin, Y. Direct assembly of large arrays of oriented conducting polymer nanowires. Angew. Chem. Int. Edn Engl. 41, 3665–3668 (2002).

    Article  CAS  Google Scholar 

  46. Tian, Z.R. et al. Large oriented arrays and continuous films of TiO2 based nanotubes. J. Am. Chem. Soc. 125, 12384–12385 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. J. Brinker of Sandia National Laboratories (SNL) for helpful discussion on this manuscript. H.X. and H.K. acknowledge support from the NSF (CTS98-71292 and EAR02-10820) to the UNM TEM facilities. This work was supported by the SNL Laboratory-Directed Research and Development Program and by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy. SNL is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the Department of Energy under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Z., Voigt, J., Liu, J. et al. Complex and oriented ZnO nanostructures. Nature Mater 2, 821–826 (2003). https://doi.org/10.1038/nmat1014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1014

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing