Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell and molecular mechanics of biological materials

Abstract

Living cells can sense mechanical forces and convert them into biological responses. Similarly, biological and biochemical signals are known to influence the abilities of cells to sense, generate and bear mechanical forces. Studies into the mechanics of single cells, subcellular components and biological molecules have rapidly evolved during the past decade with significant implications for biotechnology and human health. This progress has been facilitated by new capabilities for measuring forces and displacements with piconewton and nanometre resolutions, respectively, and by improvements in bio-imaging. Details of mechanical, chemical and biological interactions in cells remain elusive. However, the mechanical deformation of proteins and nucleic acids may provide key insights for understanding the changes in cellular structure, response and function under force, and offer new opportunities for the diagnosis and treatment of disease. This review discusses some basic features of the deformation of single cells and biomolecules, and examines opportunities for further research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell structure and elastic properties.
Figure 2: Schematic representation of the three types of experimental technique used to probe living cells.
Figure 3: Microfabricated and MEMS devices for cell mechanics measurement.

Copyright © 1997(c) & 2003 (a & b) National Academy of Sciences, U.S.A. Photograph (d) courtesy of unpublished work from D. A. LaVan, P. Leduc and G. Bao. Device fabricated in the Sandia Microelectronic Development Laboratory.

Figure 4: Cytoskeleton dynamics in living cells, as illustrated by changes in the microtubule and actin filament network during cell spreading and the rearrangement of stress fibres after cyclic stretching.

Reprinted with the permission of the Biomedical Engineering Society (b and c).

Figure 5: DNA and its elastic behaviour under stretching and twisting.

Copyright © 2003 Nature Publishing Group (b, c and e)

Figure 6: Basic structural features, characteristic length and time scales and typical force ranges of proteins.
Figure 7: Domain deformation and unfolding of a multidomain protein under stretching with AFM.

© Copyright 1999, Elsevier Science

Figure 8: The molecular motor ATP synthase.

Copyright © 1998 Nature Publishing Group (a)

Similar content being viewed by others

References

  1. Alberts, B. et al. Molecular Biology of the Cell 4th edn (Garland, New York, 2002).

    Google Scholar 

  2. Fung, Y.C. Biomechanics: Mechanical Properties of Living Tissues 2nd edn (Springer, New York, 1993).

    Book  Google Scholar 

  3. Fung, Y.C. Biomechanics: Motion, Flow, Stress, and Growth (Springer, New York, 1990).

    Book  Google Scholar 

  4. Fung, Y.C. Biomechanics: Circulation 2nd edn (Springer, New York, 1997).

    Book  Google Scholar 

  5. Bustamante, C., Bryant, Z. & Smith, S.B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

    Article  CAS  Google Scholar 

  6. Leckband, D. Measuring the forces that control protein interactions. Annu. Rev. Biophys. Biomol. Struct. 29, 1–26 (2000).

    Article  CAS  Google Scholar 

  7. Wang, W., Donini, O., Reyes, C.M. & Kollman, P.A. Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein–ligand, protein–protein, and protein–nucleic acid noncovalent interactions. Annu. Rev. Biophys. Biomol. Struct. 30, 211–243 (2001).

    Article  CAS  Google Scholar 

  8. Edwards, A.M. et al. Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends Genet. 18, 529–536 (2002).

    Article  CAS  Google Scholar 

  9. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M. & Ingber, D.E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  Google Scholar 

  10. McCormick, S.M. et al. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc. Natl Acad Sci. USA 98, 8955–8960 (2001).

    Article  CAS  Google Scholar 

  11. Stossel, T.P. On the crawling of animal cells. Science 260, 1086–1094 (1993).

    Article  CAS  Google Scholar 

  12. Ingber, D.E. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 91, 877–887 (2002).

    Article  CAS  Google Scholar 

  13. Jalali, S. et al. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl Acad. Sci. USA 98, 1042–1046 (2001).

    Article  CAS  Google Scholar 

  14. Zhu, C., Bao, G. & Wang, N. Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2, 189–226 (2000).

    Article  CAS  Google Scholar 

  15. Hochmuth, R.M. Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000).

    Article  CAS  Google Scholar 

  16. Mathur, A.B., Collinsworth, A.M., Reichert, W.M., Kraus, W.E. & Truskey, G.A. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J. Biomech. 34, 1545–1553 (2001).

    Article  CAS  Google Scholar 

  17. Brownell, W.E., Spector, A.A., Raphael, R.M. & Popel, A.S. Micro- and nanomechanics of the cochlear outer hair cell. Annu. Rev. Biomed. Eng. 3, 169–194 (2001).

    Article  CAS  Google Scholar 

  18. Morrison, B., Saatman, K.E., Meaney, D.F. & McIntosh, T.K. In vitro central nervous system models of mechanically induced trauma: a review. J. Neurotrauma 15, 911–928 (1998).

    Article  Google Scholar 

  19. Smith, D.H., Wolf, J.A. & Meaney, D.F. A new strategy to produce sustained growth of central nervous system axons: continuous mechanical tension. Tissue Eng. 7, 131–139 (2001).

    Article  CAS  Google Scholar 

  20. Pelham, R.J.J. & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    Article  CAS  Google Scholar 

  21. Chen, J., Fabry, B., Schiffrin, E.L. & Wang, N. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am. J. Physiol. Cell Physiol. 280, C1475–C1484 (2001).

    Article  CAS  Google Scholar 

  22. Evans, E. & Yeung, A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56, 151–160 (1989).

    Article  CAS  Google Scholar 

  23. Svoboda, K. & Block, S.M. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).

    Article  CAS  Google Scholar 

  24. Dao, M., Lim, C.T. & Suresh, S. Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids (in the press).

  25. Usami, S., Chen, H.H., Zhao, Y., Chien, S. & Skalak, R. Design and construction of a linear shear stress flow chamber. Ann. Biomed. Eng. 21, 77–83 (1993).

    Article  CAS  Google Scholar 

  26. Ellis, E.F., McKinney, J.S., Willoughby, K.A., Liang, S. & Povlishock, J.T. A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes. J. Neurotrauma 12, 325–339 (1995).

    Article  CAS  Google Scholar 

  27. Wang, J.H., Goldschmidt-Clermont, P. & Yin, F.C. Contractility affects stress fiber remodeling and reorientation of endothelial cells subjected to cyclic mechanical stretching. Ann. Biomed. Eng. 28, 1165–1171.

  28. Pfister, B.J., Weihs, T.P., Betenbaugh, M. & Bao, G. An in vitro uniaxial stretch model for axonal injury. Ann. Biomed. Eng. 31, 589–598 (2003).

    Article  Google Scholar 

  29. Balaban, N.Q. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001).

    Article  CAS  Google Scholar 

  30. Dembo, M. & Wang, Y.L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).

    Article  CAS  Google Scholar 

  31. Burton, K. & Taylor, D.L. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385, 450–454 (1997).

    Article  CAS  Google Scholar 

  32. Tan, J.L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

    Article  CAS  Google Scholar 

  33. Galbraith, C.G. & Sheetz, M.P. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl Acad. Sci. USA 94, 9114–9118 (1997).

    Article  CAS  Google Scholar 

  34. Fisher, A.B., Chien, S., Barakat, A.I. & Nerem, R.M. Endothelial cellular response to altered shear stress. Am. J. Physiol. Lung C. 281, L529–L533 (2001).

    Article  CAS  Google Scholar 

  35. Ali, M.H. & Schumacker, P.T. Endothelial responses to mechanical stress: where is the mechanosensor? Crit. Care Med. 30, S198–S206 (2002).

    Article  CAS  Google Scholar 

  36. Wootton, D.M. & Ku, D.N. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1, 299–329 (1999).

    Article  CAS  Google Scholar 

  37. Hochmuth, R.M. in Handbook of Bioengineering (eds Skalak, R. & Chien, S.) 12.1–12.17 (McGraw-Hill, New York, 1987).

    Google Scholar 

  38. Wang, N., Butler, J.P. & Ingber, D.E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    Article  CAS  Google Scholar 

  39. Albrecht-Buehler, G. Role of cortical tension in fibroblast shape, and movement. Cell Motil. Cytoskel. 7, 54–67 (1987).

    Article  CAS  Google Scholar 

  40. Chicurel, M.E., Chen, C.S. & Ingber, D.E. Cellular control lies in the balance of forces. Curr. Opin. Cell Biol. 10, 232–239 (1998).

    Article  CAS  Google Scholar 

  41. Malek, A.M. & Izumo, S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J. Cell Sci. 109, 713–726 (1996).

    CAS  Google Scholar 

  42. Satcher, R.L.J. & Dewey, C.F.J. Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys. J. 71, 109–118 (1996).

    Article  Google Scholar 

  43. Maniotis, A.J., Chen, C.S. & Ingber, D.E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94, 849–854 (1997).

    Article  CAS  Google Scholar 

  44. Janmey, P.A. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol. Rev. 78, 763–781 (1998).

    Article  CAS  Google Scholar 

  45. Brown, R.A., Talas, G., Porter, R.A., McGrouther, D.A. & Eastwood, M. Balanced mechanical forces and microtubule contribution to fibroblast contraction. J. Cell Physiol. 169, 439–447 (1996).

    Article  CAS  Google Scholar 

  46. Helmke, B.P. & Davies, P.F. The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium. Ann. Biomed. Eng. 30, 284–296 (2002).

    Article  Google Scholar 

  47. Gittes, F., Mickey, B., Nettleton, J. & Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934 (1993).

    Article  CAS  Google Scholar 

  48. Chicurel, M.E., Singer, R.H., Meyer, C.J. & Ingber, D.E. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 392, 730–733 (1998).

    Article  CAS  Google Scholar 

  49. Kuo, S.C. & McGrath, J.L. Steps and fluctuations of Listeria monocytogenes during actin-based motility. Nature 407, 1026–1029 (2000).

    Article  CAS  Google Scholar 

  50. Bao, G. Mechanics of biomolecules. J. Mech. Phys. Solids 50, 2237–2274 (2002).

    Article  CAS  Google Scholar 

  51. Strauss, J.K. & Maher, L.J. DNA bending by asymmetric phosphate neutralization. Science 266, 1829–1834 (1994).

    Article  CAS  Google Scholar 

  52. Geiselmann, J. The role of DNA conformation in transcriptional initiation and activation in Escherichia coli. Biol. Chem. 378, 599–607 (1997).

    CAS  Google Scholar 

  53. Strick, T.R., Allemand, J.F., Bensimon, D. & Croquette, V. Behavior of supercoiled DNA. Biophys. J. 74, 2016–2028 (1998).

    Article  CAS  Google Scholar 

  54. Bustamante, C., Marko, J.F., Siggia, E.D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994).

    Article  CAS  Google Scholar 

  55. Schellman, J.A. Flexibility of DNA. Biopolymers 13, 217–226 (1974).

    Article  CAS  Google Scholar 

  56. Hogan, M.E. & Austin, R.H. Importance of DNA stiffness in protein–DNA binding specificity. Nature 329, 263–266 (1987).

    Article  CAS  Google Scholar 

  57. Zuccheri, G. et al. Mapping the intrinsic curvature and flexibility along the DNA chain. Proc. Natl Acad. Sci. USA 98, 3074–3079 (2001).

    Article  CAS  Google Scholar 

  58. Williams, L.D. & Maher, L.J. Electrostatic mechanisms of DNA deformation. Annu. Rev. Biophys. Biomol. Struct. 29, 497–521 (2000).

    Article  CAS  Google Scholar 

  59. Doi, M. & Edwards, S.F. The Theory of Polymer Dynamics (Oxford Univ. Press, 1986).

    Google Scholar 

  60. Marko, J.F. & Siggia, E.D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).

    Article  CAS  Google Scholar 

  61. Bustamante, C., Smith, S.B., Liphardt, J. & Smith, D. Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279–285 (2000).

    Article  CAS  Google Scholar 

  62. Cluzel, P. et al. DNA: an extensible molecule. Science 271, 792–794 (1996).

    Article  CAS  Google Scholar 

  63. Smith, S.B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

    Article  CAS  Google Scholar 

  64. Voet, D. & Voet, J.G. Biochemistry 2nd edn (Wiley, New York, 1995).

    Google Scholar 

  65. Travers, A. & Muskhelishvili, G. DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. J. Mol. Biol. 279, 1027–1043 (1998).

    Article  CAS  Google Scholar 

  66. Ansari, A.Z., Chael, M.L. & O'Halloran, T.V. Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 355, 87–89 (1992).

    Article  CAS  Google Scholar 

  67. Condee, C.W. & Summers, A.O. A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. J. Bacteriol. 174, 8094–8101 (1992).

    Article  CAS  Google Scholar 

  68. Strick, T.R., Allemand, J.F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996).

    Article  CAS  Google Scholar 

  69. Allemand, J.F., Bensimon, D., Lavery, R. & Croquette, V. Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc. Natl Acad. Sci. USA 95, 14152–14257 (1998).

    Article  CAS  Google Scholar 

  70. Yin, H. et al. Transcription against an applied force. Science 270, 1653–1656 (1995).

    Article  CAS  Google Scholar 

  71. Wang, M.D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 283, 902–907 (1998).

    Article  Google Scholar 

  72. Strick, T.R., Croquette, V. & Bensimon, D. Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404, 901–904 (2000).

    Article  CAS  Google Scholar 

  73. McCammon, J.A. & Harvey, S.C. Dynamics of Proteins and Nucleic Acids (Cambridge Univ. Press, 1987).

    Book  Google Scholar 

  74. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, Massachusetts, 2001).

    Google Scholar 

  75. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  76. Kellermayer, M.S.Z., Smith, S.B., Granzier, H.L. & Bustamante, C. Folding–unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112–1116 (1997).

    Article  CAS  Google Scholar 

  77. Tskhovrebova, L., Trinnick, J., Sleep, J.A. & Simmons, R.M. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387, 308–312 (1997).

    Article  CAS  Google Scholar 

  78. Oberhauser, A.F., Marszalek, P.E., Erickson, H.P. & Fernandez, J.M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998).

    Article  CAS  Google Scholar 

  79. Subbiah, S. Protein Motions (Chapman & Hall, Austin, Texas, 1996).

    Google Scholar 

  80. Wang, H. & Oster, G. Energy transduction in the F1 motor of ATP synthase. Nature 396, 279–282 (1998).

    Article  CAS  Google Scholar 

  81. Israelachvili, J. Intermolecular and Surface Forces (Academic, San Diego, 1992).

    Google Scholar 

  82. Vogel, V., Thomas, W.E., Craig, D.W., Krammer, A. & Baneyx, G. Structural insights into the mechanical regulation of molecular recognition sites. Trends Biotechnol. 19, 416–423 (2001).

    Article  CAS  Google Scholar 

  83. Evans, E. Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    Article  CAS  Google Scholar 

  84. Tees, D.F., Waugh, R.E. & Hammer, D.A. A microcantilever device to assess the effect of force on the lifetime of selectin–carbohydrate bonds. Biophys. J. 80, 668–682 (2001).

    Article  CAS  Google Scholar 

  85. Baneyx, G., Baugh, L. & Vogel, V. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc. Natl Acad. Sci. USA 99, 5139–5143 (2002).

    Article  CAS  Google Scholar 

  86. Meyhofer, E. & Howard, J. The force generated by a single kinesin molecule against an elastic load. Proc. Natl Acad. Sci. USA 92, 574–578 (1995).

    Article  CAS  Google Scholar 

  87. Boyer, P.D. The binding change mechanism for ATP synthase — some probabilities and possibilities. Biochim. Biophys. Acta 1140, 215–250 (1993).

    Article  CAS  Google Scholar 

  88. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. Jr & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001).

    Article  CAS  Google Scholar 

  89. Kinosita, K. Jr, Yasuda, R. & Noji, H. F1-ATPase: a highly efficient rotary ATP machine. Essays Biochem. 35, 3–18 (2000).

    Article  CAS  Google Scholar 

  90. Soong, R.K. et al. Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555–1558 (2000).

    Article  CAS  Google Scholar 

  91. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Jr Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

    Article  CAS  Google Scholar 

  92. Tyagi, S. & Kramer, F.R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol. 14, 303–308 (1996).

    Article  CAS  Google Scholar 

  93. Tsourkas, A., Behlke, M., Rose, S. & Bao, G. Hybridization kinetics and thermodynamics of molecular beacons. Nucleic Acids Res. 31, 1319–1330 (2003).

    Article  CAS  Google Scholar 

  94. Vogelstein, B. & Kinzler, K.W. Digital PCR. Proc. Natl Acad. Sci. USA 96, 9236–9241 (1999).

    Article  CAS  Google Scholar 

  95. Sokol, D.L., Zhang, X., Lu, P. & Gewirtz, A.M. Real time detection of DNA. RNA hybridization in living cells. Proc. Natl Acad. Sci. USA 95, 11538–11543 (1999).

    Article  Google Scholar 

  96. Quake, S.R. & Scherer, A. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000).

    Article  CAS  Google Scholar 

  97. Seeman, N.C. DNA in a material world. Nature 421, 427–431 (2003).

    Article  CAS  Google Scholar 

  98. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z. & Shapiro, E. DNA molecule provides a computing machine with both data and fuel. Proc. Natl Acad. Sci. USA 100, 2191–2196 (2003).

    Article  CAS  Google Scholar 

  99. Fritz, J., Cooper, E.B., Gaudet, S., Sorger, P.K. & Manalis, S.R. Electronic detection of DNA by its intrinsic molecular charge. Proc. Natl Acad. Sci. USA 99, 14142–14146 (2002).

    Article  CAS  Google Scholar 

  100. Fisher, T.E., Oberhauser, A.F., Carrion-Vazquez, M., Marszalek, P.E. & Fernandez, J.M. The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24, 379–384 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the United States Army Research Office, which facilitated the preparation of this review article. S.S. further acknowledges support from the Singapore-MIT Alliance Programme on Molecular Engineering of Biological and Chemical Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suresh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, G., Suresh, S. Cell and molecular mechanics of biological materials. Nature Mater 2, 715–725 (2003). https://doi.org/10.1038/nmat1001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1001

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing