Review Article | Published:

Cell and molecular mechanics of biological materials

Nature Materialsvolume 2pages715725 (2003) | Download Citation

Subjects

Abstract

Living cells can sense mechanical forces and convert them into biological responses. Similarly, biological and biochemical signals are known to influence the abilities of cells to sense, generate and bear mechanical forces. Studies into the mechanics of single cells, subcellular components and biological molecules have rapidly evolved during the past decade with significant implications for biotechnology and human health. This progress has been facilitated by new capabilities for measuring forces and displacements with piconewton and nanometre resolutions, respectively, and by improvements in bio-imaging. Details of mechanical, chemical and biological interactions in cells remain elusive. However, the mechanical deformation of proteins and nucleic acids may provide key insights for understanding the changes in cellular structure, response and function under force, and offer new opportunities for the diagnosis and treatment of disease. This review discusses some basic features of the deformation of single cells and biomolecules, and examines opportunities for further research.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Alberts, B. et al. Molecular Biology of the Cell 4th edn (Garland, New York, 2002).

  2. 2

    Fung, Y.C. Biomechanics: Mechanical Properties of Living Tissues 2nd edn (Springer, New York, 1993).

  3. 3

    Fung, Y.C. Biomechanics: Motion, Flow, Stress, and Growth (Springer, New York, 1990).

  4. 4

    Fung, Y.C. Biomechanics: Circulation 2nd edn (Springer, New York, 1997).

  5. 5

    Bustamante, C., Bryant, Z. & Smith, S.B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

  6. 6

    Leckband, D. Measuring the forces that control protein interactions. Annu. Rev. Biophys. Biomol. Struct. 29, 1–26 (2000).

  7. 7

    Wang, W., Donini, O., Reyes, C.M. & Kollman, P.A. Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein–ligand, protein–protein, and protein–nucleic acid noncovalent interactions. Annu. Rev. Biophys. Biomol. Struct. 30, 211–243 (2001).

  8. 8

    Edwards, A.M. et al. Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends Genet. 18, 529–536 (2002).

  9. 9

    Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M. & Ingber, D.E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

  10. 10

    McCormick, S.M. et al. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc. Natl Acad Sci. USA 98, 8955–8960 (2001).

  11. 11

    Stossel, T.P. On the crawling of animal cells. Science 260, 1086–1094 (1993).

  12. 12

    Ingber, D.E. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 91, 877–887 (2002).

  13. 13

    Jalali, S. et al. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl Acad. Sci. USA 98, 1042–1046 (2001).

  14. 14

    Zhu, C., Bao, G. & Wang, N. Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2, 189–226 (2000).

  15. 15

    Hochmuth, R.M. Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000).

  16. 16

    Mathur, A.B., Collinsworth, A.M., Reichert, W.M., Kraus, W.E. & Truskey, G.A. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J. Biomech. 34, 1545–1553 (2001).

  17. 17

    Brownell, W.E., Spector, A.A., Raphael, R.M. & Popel, A.S. Micro- and nanomechanics of the cochlear outer hair cell. Annu. Rev. Biomed. Eng. 3, 169–194 (2001).

  18. 18

    Morrison, B., Saatman, K.E., Meaney, D.F. & McIntosh, T.K. In vitro central nervous system models of mechanically induced trauma: a review. J. Neurotrauma 15, 911–928 (1998).

  19. 19

    Smith, D.H., Wolf, J.A. & Meaney, D.F. A new strategy to produce sustained growth of central nervous system axons: continuous mechanical tension. Tissue Eng. 7, 131–139 (2001).

  20. 20

    Pelham, R.J.J. & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

  21. 21

    Chen, J., Fabry, B., Schiffrin, E.L. & Wang, N. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am. J. Physiol. Cell Physiol. 280, C1475–C1484 (2001).

  22. 22

    Evans, E. & Yeung, A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56, 151–160 (1989).

  23. 23

    Svoboda, K. & Block, S.M. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).

  24. 24

    Dao, M., Lim, C.T. & Suresh, S. Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids (in the press).

  25. 25

    Usami, S., Chen, H.H., Zhao, Y., Chien, S. & Skalak, R. Design and construction of a linear shear stress flow chamber. Ann. Biomed. Eng. 21, 77–83 (1993).

  26. 26

    Ellis, E.F., McKinney, J.S., Willoughby, K.A., Liang, S. & Povlishock, J.T. A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes. J. Neurotrauma 12, 325–339 (1995).

  27. 27

    Wang, J.H., Goldschmidt-Clermont, P. & Yin, F.C. Contractility affects stress fiber remodeling and reorientation of endothelial cells subjected to cyclic mechanical stretching. Ann. Biomed. Eng. 28, 1165–1171.

  28. 28

    Pfister, B.J., Weihs, T.P., Betenbaugh, M. & Bao, G. An in vitro uniaxial stretch model for axonal injury. Ann. Biomed. Eng. 31, 589–598 (2003).

  29. 29

    Balaban, N.Q. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001).

  30. 30

    Dembo, M. & Wang, Y.L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).

  31. 31

    Burton, K. & Taylor, D.L. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385, 450–454 (1997).

  32. 32

    Tan, J.L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

  33. 33

    Galbraith, C.G. & Sheetz, M.P. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl Acad. Sci. USA 94, 9114–9118 (1997).

  34. 34

    Fisher, A.B., Chien, S., Barakat, A.I. & Nerem, R.M. Endothelial cellular response to altered shear stress. Am. J. Physiol. Lung C. 281, L529–L533 (2001).

  35. 35

    Ali, M.H. & Schumacker, P.T. Endothelial responses to mechanical stress: where is the mechanosensor? Crit. Care Med. 30, S198–S206 (2002).

  36. 36

    Wootton, D.M. & Ku, D.N. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1, 299–329 (1999).

  37. 37

    Hochmuth, R.M. in Handbook of Bioengineering (eds Skalak, R. & Chien, S.) 12.1–12.17 (McGraw-Hill, New York, 1987).

  38. 38

    Wang, N., Butler, J.P. & Ingber, D.E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

  39. 39

    Albrecht-Buehler, G. Role of cortical tension in fibroblast shape, and movement. Cell Motil. Cytoskel. 7, 54–67 (1987).

  40. 40

    Chicurel, M.E., Chen, C.S. & Ingber, D.E. Cellular control lies in the balance of forces. Curr. Opin. Cell Biol. 10, 232–239 (1998).

  41. 41

    Malek, A.M. & Izumo, S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J. Cell Sci. 109, 713–726 (1996).

  42. 42

    Satcher, R.L.J. & Dewey, C.F.J. Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys. J. 71, 109–118 (1996).

  43. 43

    Maniotis, A.J., Chen, C.S. & Ingber, D.E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94, 849–854 (1997).

  44. 44

    Janmey, P.A. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol. Rev. 78, 763–781 (1998).

  45. 45

    Brown, R.A., Talas, G., Porter, R.A., McGrouther, D.A. & Eastwood, M. Balanced mechanical forces and microtubule contribution to fibroblast contraction. J. Cell Physiol. 169, 439–447 (1996).

  46. 46

    Helmke, B.P. & Davies, P.F. The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium. Ann. Biomed. Eng. 30, 284–296 (2002).

  47. 47

    Gittes, F., Mickey, B., Nettleton, J. & Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934 (1993).

  48. 48

    Chicurel, M.E., Singer, R.H., Meyer, C.J. & Ingber, D.E. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 392, 730–733 (1998).

  49. 49

    Kuo, S.C. & McGrath, J.L. Steps and fluctuations of Listeria monocytogenes during actin-based motility. Nature 407, 1026–1029 (2000).

  50. 50

    Bao, G. Mechanics of biomolecules. J. Mech. Phys. Solids 50, 2237–2274 (2002).

  51. 51

    Strauss, J.K. & Maher, L.J. DNA bending by asymmetric phosphate neutralization. Science 266, 1829–1834 (1994).

  52. 52

    Geiselmann, J. The role of DNA conformation in transcriptional initiation and activation in Escherichia coli. Biol. Chem. 378, 599–607 (1997).

  53. 53

    Strick, T.R., Allemand, J.F., Bensimon, D. & Croquette, V. Behavior of supercoiled DNA. Biophys. J. 74, 2016–2028 (1998).

  54. 54

    Bustamante, C., Marko, J.F., Siggia, E.D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994).

  55. 55

    Schellman, J.A. Flexibility of DNA. Biopolymers 13, 217–226 (1974).

  56. 56

    Hogan, M.E. & Austin, R.H. Importance of DNA stiffness in protein–DNA binding specificity. Nature 329, 263–266 (1987).

  57. 57

    Zuccheri, G. et al. Mapping the intrinsic curvature and flexibility along the DNA chain. Proc. Natl Acad. Sci. USA 98, 3074–3079 (2001).

  58. 58

    Williams, L.D. & Maher, L.J. Electrostatic mechanisms of DNA deformation. Annu. Rev. Biophys. Biomol. Struct. 29, 497–521 (2000).

  59. 59

    Doi, M. & Edwards, S.F. The Theory of Polymer Dynamics (Oxford Univ. Press, 1986).

  60. 60

    Marko, J.F. & Siggia, E.D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).

  61. 61

    Bustamante, C., Smith, S.B., Liphardt, J. & Smith, D. Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279–285 (2000).

  62. 62

    Cluzel, P. et al. DNA: an extensible molecule. Science 271, 792–794 (1996).

  63. 63

    Smith, S.B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

  64. 64

    Voet, D. & Voet, J.G. Biochemistry 2nd edn (Wiley, New York, 1995).

  65. 65

    Travers, A. & Muskhelishvili, G. DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. J. Mol. Biol. 279, 1027–1043 (1998).

  66. 66

    Ansari, A.Z., Chael, M.L. & O'Halloran, T.V. Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 355, 87–89 (1992).

  67. 67

    Condee, C.W. & Summers, A.O. A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. J. Bacteriol. 174, 8094–8101 (1992).

  68. 68

    Strick, T.R., Allemand, J.F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996).

  69. 69

    Allemand, J.F., Bensimon, D., Lavery, R. & Croquette, V. Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc. Natl Acad. Sci. USA 95, 14152–14257 (1998).

  70. 70

    Yin, H. et al. Transcription against an applied force. Science 270, 1653–1656 (1995).

  71. 71

    Wang, M.D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 283, 902–907 (1998).

  72. 72

    Strick, T.R., Croquette, V. & Bensimon, D. Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404, 901–904 (2000).

  73. 73

    McCammon, J.A. & Harvey, S.C. Dynamics of Proteins and Nucleic Acids (Cambridge Univ. Press, 1987).

  74. 74

    Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, Massachusetts, 2001).

  75. 75

    Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

  76. 76

    Kellermayer, M.S.Z., Smith, S.B., Granzier, H.L. & Bustamante, C. Folding–unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112–1116 (1997).

  77. 77

    Tskhovrebova, L., Trinnick, J., Sleep, J.A. & Simmons, R.M. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387, 308–312 (1997).

  78. 78

    Oberhauser, A.F., Marszalek, P.E., Erickson, H.P. & Fernandez, J.M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998).

  79. 79

    Subbiah, S. Protein Motions (Chapman & Hall, Austin, Texas, 1996).

  80. 80

    Wang, H. & Oster, G. Energy transduction in the F1 motor of ATP synthase. Nature 396, 279–282 (1998).

  81. 81

    Israelachvili, J. Intermolecular and Surface Forces (Academic, San Diego, 1992).

  82. 82

    Vogel, V., Thomas, W.E., Craig, D.W., Krammer, A. & Baneyx, G. Structural insights into the mechanical regulation of molecular recognition sites. Trends Biotechnol. 19, 416–423 (2001).

  83. 83

    Evans, E. Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

  84. 84

    Tees, D.F., Waugh, R.E. & Hammer, D.A. A microcantilever device to assess the effect of force on the lifetime of selectin–carbohydrate bonds. Biophys. J. 80, 668–682 (2001).

  85. 85

    Baneyx, G., Baugh, L. & Vogel, V. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc. Natl Acad. Sci. USA 99, 5139–5143 (2002).

  86. 86

    Meyhofer, E. & Howard, J. The force generated by a single kinesin molecule against an elastic load. Proc. Natl Acad. Sci. USA 92, 574–578 (1995).

  87. 87

    Boyer, P.D. The binding change mechanism for ATP synthase — some probabilities and possibilities. Biochim. Biophys. Acta 1140, 215–250 (1993).

  88. 88

    Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. Jr & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001).

  89. 89

    Kinosita, K. Jr, Yasuda, R. & Noji, H. F1-ATPase: a highly efficient rotary ATP machine. Essays Biochem. 35, 3–18 (2000).

  90. 90

    Soong, R.K. et al. Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555–1558 (2000).

  91. 91

    Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Jr Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

  92. 92

    Tyagi, S. & Kramer, F.R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol. 14, 303–308 (1996).

  93. 93

    Tsourkas, A., Behlke, M., Rose, S. & Bao, G. Hybridization kinetics and thermodynamics of molecular beacons. Nucleic Acids Res. 31, 1319–1330 (2003).

  94. 94

    Vogelstein, B. & Kinzler, K.W. Digital PCR. Proc. Natl Acad. Sci. USA 96, 9236–9241 (1999).

  95. 95

    Sokol, D.L., Zhang, X., Lu, P. & Gewirtz, A.M. Real time detection of DNA. RNA hybridization in living cells. Proc. Natl Acad. Sci. USA 95, 11538–11543 (1999).

  96. 96

    Quake, S.R. & Scherer, A. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000).

  97. 97

    Seeman, N.C. DNA in a material world. Nature 421, 427–431 (2003).

  98. 98

    Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z. & Shapiro, E. DNA molecule provides a computing machine with both data and fuel. Proc. Natl Acad. Sci. USA 100, 2191–2196 (2003).

  99. 99

    Fritz, J., Cooper, E.B., Gaudet, S., Sorger, P.K. & Manalis, S.R. Electronic detection of DNA by its intrinsic molecular charge. Proc. Natl Acad. Sci. USA 99, 14142–14146 (2002).

  100. 100

    Fisher, T.E., Oberhauser, A.F., Carrion-Vazquez, M., Marszalek, P.E. & Fernandez, J.M. The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24, 379–384 (1999).

Download references

Acknowledgements

We acknowledge support from the United States Army Research Office, which facilitated the preparation of this review article. S.S. further acknowledges support from the Singapore-MIT Alliance Programme on Molecular Engineering of Biological and Chemical Systems.

Author information

Affiliations

  1. Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, Georgia, USA

    • G. Bao
  2. Department of Materials Science and Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA

    • S. Suresh

Authors

  1. Search for G. Bao in:

  2. Search for S. Suresh in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to S. Suresh.

About this article

Publication history

Issue Date

DOI

https://doi.org/10.1038/nmat1001

Further reading