Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV evolution: CTL escape mutation and reversion after transmission

Abstract

Within-patient HIV evolution reflects the strong selection pressure driving viral escape from cytotoxic T-lymphocyte (CTL) recognition. Whether this intrapatient accumulation of escape mutations translates into HIV evolution at the population level has not been evaluated. We studied over 300 patients drawn from the B- and C-clade epidemics, focusing on human leukocyte antigen (HLA) alleles HLA-B57 and HLA-B5801, which are associated with long-term HIV control and are therefore likely to exert strong selection pressure on the virus. The CTL response dominating acute infection in HLA-B57/5801-positive subjects drove positive selection of an escape mutation that reverted to wild-type after transmission to HLA-B57/5801-negative individuals. A second escape mutation within the epitope, by contrast, was maintained after transmission. These data show that the process of accumulation of escape mutations within HIV is not inevitable. Complex epitope- and residue-specific selection forces, including CTL-mediated positive selection pressure and virus-mediated purifying selection, operate in tandem to shape HIV evolution at the population level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TW10 variants are escape mutations.
Figure 2: Reversion of TW10 variants after transmission to HLA-B57/5801-negative subjects.
Figure 3: Patterns of HLA-B57/5801-associated mutation and reversion before and after transmission.

Similar content being viewed by others

References

  1. Koenig, S. et al. Transfer of HIV-1-specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression. Nat. Med. 1, 330–336 (1995).

    Article  CAS  Google Scholar 

  2. Borrow, P. et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat. Med. 3, 205–211 (1997).

    Article  CAS  Google Scholar 

  3. Goulder, P.J. et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat. Med. 3, 212–217 (1997).

    Article  CAS  Google Scholar 

  4. Barouch, D.H. et al. Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature 415, 335–339 (2002).

    Article  CAS  Google Scholar 

  5. Klenerman, P., Wu, Y. & Phillips, R. HIV: current opinion in escapology. Curr. Opin. Microbiol. 5, 408–413 (2002).

    Article  CAS  Google Scholar 

  6. Evans, D.T. et al. Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef. Nat. Med. 5, 1270–1276 (1999).

    Article  CAS  Google Scholar 

  7. Allen, T.M. et al. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature 407, 386–390 (2000).

    Article  CAS  Google Scholar 

  8. Phillips, R.E. et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354, 453–459 (1991).

    Article  CAS  Google Scholar 

  9. Moore, C.B. et al. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296, 1439–1443 (2002).

    Article  CAS  Google Scholar 

  10. Goulder, P.J. et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412, 334–338 (2001).

    Article  CAS  Google Scholar 

  11. Kaslow, R.A. et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat. Med. 2, 405–411 (1996).

    Article  CAS  Google Scholar 

  12. Migueles, S.A. et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc. Natl. Acad. Sci. USA 97, 2709–2714 (2000).

    Article  CAS  Google Scholar 

  13. O'Brien, S.J., Gao, X. & Carrington, M. HLA and AIDS: a cautionary tale. Trends Mol. Med. 7, 379–381 (2001).

    Article  CAS  Google Scholar 

  14. Goulder, P.J. et al. Novel, cross-restricted, conserved, and immunodominant cytotoxic T lymphocyte epitopes in slow progressors in HIV type 1 infection. AIDS Res. Hum. Retroviruses 12, 1691–1698 (1996).

    Article  CAS  Google Scholar 

  15. Tang, J. et al. Favorable and unfavorable HLA class I alleles and haplotypes in Zambians predominantly infected with clade C human immunodeficiency virus type 1. J. Virol. 76, 8276–8284 (2002).

    Article  CAS  Google Scholar 

  16. Yu, X.G. et al. Consistent patterns in the development and immunodominance of human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses following acute HIV-1 infection. J. Virol. 76, 8690–8701 (2002).

    Article  CAS  Google Scholar 

  17. Novitsky, V. et al. Magnitude and frequency of cytotoxic T-lymphocyte responses: identification of immunodominant regions of human immunodeficiency virus type 1 subtype C. J. Virol. 76, 10155–10168 (2002).

    Article  CAS  Google Scholar 

  18. Addo, M.M. et al. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J. Virol. 77, 2081–2092 (2003).

    Article  CAS  Google Scholar 

  19. Altfeld, M.E.A. Influence of HLA-B57 on clinical presentation and viral control during acute HIV-1 infection. AIDS 17, 2581–2591 (2003).

    Article  CAS  Google Scholar 

  20. Yang, Z. Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A. J. Mol. Evol. 51, 423–432 (2000).

    Article  CAS  Google Scholar 

  21. McMichael, A. & Klenerman, P. HIV/AIDS. HLA leaves its footprints on HIV. Science 296, 1410–1411 (2002).

    Article  CAS  Google Scholar 

  22. Frahm, N. et al. Identification of highly immunodominant regions in HIV by comprehensive CTL screening of ethnically diverse populations. J. Virol. (in the press).

  23. Barber, L.D. et al. Polymorphism in the α1 helix of the HLA-B heavy chain can have an overriding influence on peptide-binding specificity. J. Immunol. 158, 1660–1669 (1997).

    CAS  Google Scholar 

  24. Kelleher, A.D. et al. Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses. J. Exp. Med. 193, 375–386 (2001).

    Article  CAS  Google Scholar 

  25. Richman, D.D., Wrin, T., Little, S.J. & Petropoulos, C.J. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc. Natl. Acad. Sci. USA 100, 4144–4149 (2003).

    Article  CAS  Google Scholar 

  26. Cohen, J. HIV. Escape artist par excellence. Science 299, 1505–1508 (2003).

    Article  CAS  Google Scholar 

  27. Migueles, S.A. et al. The differential ability of HLA B*5701+ long-term nonprogressors and progressors to restrict human immunodeficiency virus replication is not caused by loss of recognition of autologous viral gag sequences. J. Virol. 77, 6889–6898 (2003).

    Article  CAS  Google Scholar 

  28. Coffin, J.M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267, 483–489 (1995).

    Article  CAS  Google Scholar 

  29. Greene, W.C. & Peterlin, B.M. Charting HIV's remarkable voyage through the cell: basic science as a passport to future therapy. Nat. Med. 8, 673–680 (2002).

    Article  CAS  Google Scholar 

  30. Novitsky, V. et al. Human immunodeficiency virus type 1 subtype C molecular phylogeny: consensus sequence for an AIDS vaccine design? J. Virol. 76, 5435–5451 (2002).

    Article  CAS  Google Scholar 

  31. Singh, A.R., Hill, R.L. & Lingappa, J.R. Effect of mutations in Gag on assembly of immature human immunodeficiency virus type 1 capsids in a cell-free system. Virology 279, 257–270 (2001).

    Article  CAS  Google Scholar 

  32. Furuta, R.A. et al. HIV-1 capsid mutants inhibit the replication of wild-type virus at both early and late infection phases. FEBS Lett. 415, 231–234 (1997).

    Article  CAS  Google Scholar 

  33. Krogstad, P. et al. Human immunodeficiency virus nucleocapsid protein polymorphisms modulate the infectivity of RNA packaging mutants. Virology 294, 282–288 (2002).

    Article  CAS  Google Scholar 

  34. Forshey, B.M., von Schwedler, U., Sundquist, W.I. & Aiken, C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J. Virol. 76, 5667–5677 (2002).

    Article  CAS  Google Scholar 

  35. Braaten, D., Franke, E.K. & Luban, J. Cyclophilin A is required for the replication of group M human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus SIV(CPZ)GAB but not group O HIV-1 or other primate immunodeficiency viruses. J. Virol. 70, 4220–4227 (1996).

    CAS  PubMed Central  Google Scholar 

  36. Braaten, D., Franke, E.K. & Luban, J. Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription. J. Virol. 70, 3551–3560 (1996).

    CAS  PubMed Central  Google Scholar 

  37. Yoo, S. et al. Molecular recognition in the HIV-1 capsid/cyclophilin A complex. J. Mol. Biol. 269, 780–795 (1997).

    Article  CAS  Google Scholar 

  38. Goulder, P.J. et al. Substantial differences in specificity of HIV-specific cytotoxic T cells in acute and chronic HIV infection. J. Exp. Med. 193, 181–194 (2001).

    Article  CAS  Google Scholar 

  39. Bunce, M. et al. Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens 46, 355–367 (1995).

    Article  CAS  Google Scholar 

  40. Goulder, P.J. et al. Rapid definition of five novel HLA-A*3002-restricted human immunodeficiency virus-specific cytotoxic T-lymphocyte epitopes by Elispot and intracellular cytokine staining assays. J. Virol. 75, 1339–1347 (2001).

    Article  CAS  Google Scholar 

  41. Ross, H.A. & Rodrigo, A.G. Immune-mediated positive selection drives human immunodeficiency virus type 1 molecular variation and predicts disease duration. J. Virol. 76, 11715–11720 (2002).

    Article  CAS  Google Scholar 

  42. Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997).

    CAS  Google Scholar 

  43. Swofford, D.L. in PAUP*. Phylogenetic Analysis Using Parsimony (* and other methods) 4th edn. (Sinauer Associates, Sunderland, Massachusetts, 2002).

    Google Scholar 

  44. Hayman, A. et al. Phylogenetic analysis of multiple heterosexual transmission events involving subtype B of HIV type 1. AIDS Res. Hum. Retroviruses 17, 689–695 (2001).

    Article  CAS  Google Scholar 

  45. Kasper, P. et al. The genetic diversification of the HIV type 1 gag p17 gene in patients infected from a common source. AIDS Res. Hum. Retroviruses 11, 1197–1201 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank those who made possible the collection of blood samples for this study, in particular the staff at Cato Manor Clinic, Durban (the largest single cohort). We also thank M. Hammond and M. Bunce for HLA typing; C. Hull-Jackson, B. Matz, C. Edwards and H. Coovadia for facilitating these studies; M. Maiden and L. Richardson for assisting with the sequencing; and P. Klenerman and R. Phillips for critically reviewing the manuscript. This work was supported by the Wellcome Trust (P.J.R.G. and A.L.), the Elizabeth Glaser Pediatric AIDS Foundation (P.J.R.G. and M.F.), the Spanish Health Department (BEFI, Red G03/173 to J.M.-P.), the National Institutes of Health (AI46995-01A1 and N01-AI-15442) and the Doris Duke Charitable Foundation. P.J.R.G. is an Elizabeth Glaser Scientist and B.D.W. is a Doris Duke Distinguished Clinical Science Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J R Goulder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leslie, A., Pfafferott, K., Chetty, P. et al. HIV evolution: CTL escape mutation and reversion after transmission. Nat Med 10, 282–289 (2004). https://doi.org/10.1038/nm992

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm992

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing