Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo

Abstract

Pathogens or pathogen-associated molecular patterns can signal to cells of the innate immune system and trigger effective adaptive immunity. However, relatively little is known about how the innate immune system detects tissue injury or necrosis. Evidence suggests that the release of heat-shock proteins (HSPs) may provide adjuvant-like signals, but the ability of HSPs to promote activation or tolerance in vivo has not been addressed. In this study we show that Hsp70 promotes dendritic cell (DC) function and, together with antigen, triggers autoimmune disease in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hsp70 promotes autoimmunity in vivo.
Figure 2: Administration of Hsp70 and antigen promotes inflammation and IFN-γ production in vivo.
Figure 3: Hsp70 increases antigen-presenting function of splenic DCs and enhances CTL responses against coadministered peptide.
Figure 4: Hsp70-induced diabetes requires CD4+ T-cell help and CD40 expression on APCs, but not costimulation through CD28.
Figure 5: Hsp70 induces secretion of IL-12p40 from BMDCs.
Figure 6: Hsp70 induces functional maturation of BMDCs in the absence of phenotypic maturation.

Similar content being viewed by others

References

  1. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  Google Scholar 

  2. Heath, W.R. & Carbone, F.R. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol. 19, 47–64 (2001).

    Article  CAS  Google Scholar 

  3. Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  Google Scholar 

  4. Janeway, C.A., Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  Google Scholar 

  5. Diehl, L. et al. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat. Med. 5, 774–779 (1999).

    Article  CAS  Google Scholar 

  6. Sotomayor, E.M. et al. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat. Med. 5, 780–787 (1999).

    Article  CAS  Google Scholar 

  7. Garza, K.M. et al. Role of antigen-presenting cells in mediating tolerance and autoimmunity. J. Exp. Med. 191, 2021–2027 (2000).

    Article  CAS  Google Scholar 

  8. Bansal-Pakala, P., Jember, A.G. & Croft, M. Signaling through OX40 (CD134) breaks peripheral T-cell tolerance. Nat. Med. 7, 907–912 (2001).

    Article  CAS  Google Scholar 

  9. Ehl, S. et al. Viral and bacterial infections interfere with peripheral tolerance induction and activate CD8+ T cells to cause immunopathology. J. Exp. Med. 187, 763–774 (1998).

    Article  CAS  Google Scholar 

  10. Schuurhuis, D.H. et al. Immature dendritic cells acquire CD8+ cytotoxic T lymphocyte priming capacity upon activation by T helper cell-independent or -dependent stimuli. J. Exp. Med. 192, 145–150 (2000).

    Article  CAS  Google Scholar 

  11. Mauri, C., Mars, L.T. & Londei, M. Therapeutic activity of agonistic monoclonal antibodies against CD40 in a chronic autoimmune inflammatory process. Nat. Med. 6, 673–679 (2000).

    Article  CAS  Google Scholar 

  12. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. 5, 1249–1255 (1999).

    Article  CAS  Google Scholar 

  13. Basu, S., Binder, R.J., Suto, R., Anderson, K.M. & Srivastava, P.K. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol. 12, 1539–1546 (2000).

    Article  CAS  Google Scholar 

  14. Sauter, B. et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–434 (2000).

    Article  CAS  Google Scholar 

  15. Chen, W., Syldath, U., Bellmann, K., Burkart, V. & Kolb, H. Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J. Immunol. 162, 3212–3219 (1999).

    CAS  PubMed  Google Scholar 

  16. Asea, A. et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 6, 435–442 (2000).

    Article  CAS  Google Scholar 

  17. Kol, A., Lichtman, A.H., Finberg, R.W., Libby, P. & Kurt-Jones, E.A. Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J. Immunol. 164, 13–17 (2000).

    Article  CAS  Google Scholar 

  18. Ohashi, K., Burkart, V., Flohe, S. & Kolb, H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164, 558–561 (2000).

    Article  CAS  Google Scholar 

  19. Moroi, Y. et al. Induction of cellular immunity by immunization with novel hybrid peptides complexed to heat shock protein 70. Proc. Natl. Acad. Sci. USA 97, 3485–3490 (2000).

    Article  CAS  Google Scholar 

  20. Singh-Jasuja, H. et al. The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur. J. Immunol. 30, 2211–2215 (2000).

    Article  CAS  Google Scholar 

  21. Cho, B.K. et al. A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat shock fusion proteins. Immunity 12, 263–272 (2000).

    Article  CAS  Google Scholar 

  22. Kuppner, M.C. et al. The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur. J. Immunol. 31, 1602–1609 (2001).

    Article  CAS  Google Scholar 

  23. Binder, R.J., Anderson, K.M., Basu, S. & Srivastava, P.K. Cutting edge: heat shock protein gp96 induces maturation and migration of CD11c+ cells in vivo. J. Immunol. 165, 6029–6035 (2000).

    Article  CAS  Google Scholar 

  24. Wang, Y. et al. CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity 15, 971–983 (2001).

    Article  CAS  Google Scholar 

  25. Ohashi, P.S. et al. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65, 305–317 (1991).

    Article  CAS  Google Scholar 

  26. Kyburz, D. et al. T cell immunity after a viral infection versus T cell tolerance induced by soluble viral peptides. Eur. J. Immunol. 23, 1956–1962 (1993).

    Article  CAS  Google Scholar 

  27. Chiller, J.M. & Weigle, W.O. Termination of tolerance to human gamma globulin in mice by antigen and bacterial lipopolysaccharide (endotoxin). J. Exp. Med. 137, 740–750 (1973).

    Article  CAS  Google Scholar 

  28. Bausinger, H. et al. Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur. J. Immunol. 32, 3708–3713 (2002).

    Article  CAS  Google Scholar 

  29. Gao, B. & Tsan, M.F. Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor α release by murine macrophages. J. Biol. Chem. 278, 174–179 (2003).

    Article  CAS  Google Scholar 

  30. Srivastava, P.K. Purification of heat shock protein-peptide complexes for use in vaccination against cancers and intracellular pathogens. Methods 12, 165–171 (1997).

    Article  CAS  Google Scholar 

  31. Ridge, J.P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    Article  CAS  Google Scholar 

  32. Bennett, S.R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    Article  CAS  Google Scholar 

  33. Schoenberger, S.P., Toes, R.E., van der Voort, E.I., Offringa, R. & Melief, C.J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393, 480–483 (1998).

    Article  CAS  Google Scholar 

  34. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680 (2001).

    Article  CAS  Google Scholar 

  35. Basu, S., Binder, R.J., Ramalingam, T. & Srivastava, P.K. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14, 303–313 (2001).

    Article  CAS  Google Scholar 

  36. Asea, A. et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 277, 15028–15034 (2002).

    Article  CAS  Google Scholar 

  37. Vabulas, R.M. et al. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem. 277, 15107–15112 (2002).

    Article  CAS  Google Scholar 

  38. Srivastava, P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 20, 395–425 (2002).

    Article  CAS  Google Scholar 

  39. Blachere, N.E. et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med. 186, 1315–1322 (1997).

    Article  CAS  Google Scholar 

  40. Suzue, K., Zhou, X., Eisen, H.N. & Young, R.A. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc. Natl. Acad. Sci. USA 94, 13146–13151 (1997).

    Article  CAS  Google Scholar 

  41. Ciupitu, A.M. et al. Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes. J. Exp. Med. 187, 685–691 (1998).

    Article  CAS  Google Scholar 

  42. Liu, B. et al. Cell surface expression on an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune disease. Proc. Natl. Acad. Sci. USA (in the press).

  43. Melcher, A. et al. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat. Med. 4, 581–587 (1998).

    Article  CAS  Google Scholar 

  44. Somersan, S. et al. Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J. Immunol. 167, 4844–4852 (2001).

    Article  CAS  Google Scholar 

  45. Breloer, M., Fleischer, B. & von Bonin, A. In vivo and in vitro activation of T cells after administration of Ag-negative heat shock proteins. J. Immunol. 162, 3141–3147 (1999).

    CAS  PubMed  Google Scholar 

  46. Asea, A., Kabingu, E., Stevenson, M.A. & Calderwood, S.K. HSP70 peptide-bearing and peptide-negative preparations act as chaperokines. Cell Stress Chaperones 5, 425–431 (2000).

    Article  CAS  Google Scholar 

  47. Binder, R.J., Han, D.K. & Srivastava, P.K. CD91: a receptor for heat shock protein gp96. Nat. Immunol. 1, 151–155 (2000).

    Article  CAS  Google Scholar 

  48. Becker, T., Hartl, F.U. & Wieland, F. CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J. Cell Biol. 158, 1277–1285 (2002).

    Article  CAS  Google Scholar 

  49. Schulz, O. et al. CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity 13, 453–462 (2000).

    Article  CAS  Google Scholar 

  50. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  Google Scholar 

  51. Kaisho, T., Takeuchi, O., Kawai, T., Hoshino, K. & Akira, S. Endotoxin-induced maturation of MyD88-deficient dendritic cells. J. Immunol. 166, 5688–5694 (2001).

    Article  CAS  Google Scholar 

  52. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  Google Scholar 

  53. Nguyen, L.T. et al. Tumor growth enhances cross-presentation leading to limited T cell activation without tolerance. J. Exp. Med. 195, 423–435 (2002).

    Article  CAS  Google Scholar 

  54. Lutz, M.B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223, 77–92 (1999).

    Article  CAS  Google Scholar 

  55. Chan, V.S., Wong, C. & Ohashi, P.S. Calcineurin Aα plays an exclusive role in TCR signaling in mature but not in immature T cells. Eur. J. Immunol. 32, 1223–1229 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a Canadian Institute for Health Research operating grant and CANVAC Network Centres of Excellence. D.G.M. is the recipient of a Canadian Diabetes Association Fellowship. K.M.G. is supported by National Institutes of Health grants S06GM08012 and SG12RR08124. Z.L. is supported in part by NIH grant CA90337. P.S.O. holds a Canada Research Chair in Infection and Immunity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela S Ohashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millar, D., Garza, K., Odermatt, B. et al. Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat Med 9, 1469–1476 (2003). https://doi.org/10.1038/nm962

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm962

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing